alexa Variability across ten production lots of a single demineralized bone matrix product.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Obesity & Weight Loss Therapy

Author(s): Bae H, Zhao L, Zhu D, Kanim LE, Wang JC,

Abstract Share this page

Abstract BACKGROUND: Demineralized bone matrix is an osteoinductive allograft derived from processed bone that is commonly mixed with autogenous bone in fusion procedures to treat diseases of the spine. An increasing number of demineralized bone matrix-based products are commercially available for spinal fusion procedures, but osteoinductive variability has been found not only across different products but also among production lots from the same demineralized bone matrix formulation. The purpose of this study was to assess the lot-to-lot variability across a single demineralized bone matrix-based product in terms of both extracted bone morphogenetic protein (BMP) concentrations (in vitro) and fusion performance in rats (in vivo). The goal was also to determine whether the in vitro measures could sufficiently and accurately predict the in vivo fusion performance of different demineralized bone matrix-based product lots. METHODS: BMP-2 and BMP-7 were extracted from ten production lots of InterGro DBM Putty and quantified with use of ELISA (enzyme-linked immunosorbent assay). A posterolateral lumbar spinal fusion was performed on forty athymic rats with implantation of a demineralized bone matrix-based product. Fusion success was determined at eight weeks with use of radiographs and manual palpation of the segments. Logistic regression was used to determine the predictive abilities of BMPs. RESULTS: Significant lot-to-lot variability was found in terms of both BMP concentrations (22 to 110 pg of BMP-2 per milligram of product and 44 to 125 pg of BMP-7 per milligram of product) and in vivo rates of fusion (0\% to 75\%; p < 0.04 for all). BMP-2 and BMP-7 concentrations correlated positively with each other across lots (r = 0.77, p < 0.0001). Most notably, extracted amounts of BMP-2 and BMP-7 each predicted in a dose-dependent manner the in vivo fusion performance in rats (R(2) = 0.32, p < 0.01 for BMP-2, and R(2) = 0.22, p < 0.009 for BMP-7). CONCLUSIONS: Assays for demineralized bone matrix-extracted BMP-2 and BMP-7 levels may be feasible and sufficient for predicting spinal fusion performance of individual production lots from the same demineralized bone matrix-based product. This article was published in J Bone Joint Surg Am and referenced in Journal of Obesity & Weight Loss Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 14th Global Obesity Meeting
    Oct 23-24, 2017 Dubai, UAE
  • 16th International Conference and Exhibition on Obesity & Weight Management
    November 13-15, 2017 Atlanta,Georgia, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords