alexa Vascularization--the conduit to viable engineered tissues.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Kaully T, KaufmanFrancis K, Lesman A, Levenberg S

Abstract Share this page

Abstract Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues. This article was published in Tissue Eng Part B Rev and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version