alexa Vascular-mesenchymal cross-talk through Vegf and Pdgf drives organ patterning.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Cool J, DeFalco TJ, Capel B

Abstract Share this page

Abstract The initiation of de novo testis cord organization in the fetal gonad is poorly understood. Endothelial cell migration into XY gonads initiates testis morphogenesis. However, neither the signals that regulate vascularization of the gonad nor the mechanisms through which vessels affect tissue morphogenesis are known. Here, we show that Vegf signaling is required for gonad vascularization and cord morphogenesis. We establish that interstitial cells express Vegfa and respond, by proliferation, to endothelial migration. In the absence of vasculature, four-dimensional imaging of whole organs revealed that interstitial proliferation is reduced and prevents formation of wedge-like structures that partition the gonad into cord-forming domains. Antagonizing vessel maturation also reduced proliferation. However, proliferation of mesenchymal cells was rescued by the addition of PDGF-BB. These results suggest a pathway that integrates initiation of vascular development and testis cord morphogenesis, and lead to a model in which undifferentiated mesenchyme recruits blood vessels, proliferates in response, and performs a primary function in the morphogenesis and patterning of the developing organ.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version