alexa Vaxfectin enhances the humoral immune response to plasmid DNA-encoded antigens.


Journal of Vaccines & Vaccination

Author(s): Hartikka J, Bozoukova V, Ferrari M, Sukhu L, Enas J,

Abstract Share this page

Abstract This report characterizes Vaxfectin, a novel cationic and neutral lipid formulation which enhances antibody responses when complexed with an antigen-encoding plasmid DNA (pDNA). In mice, intramuscular injection of Vaxfectin formulated with pDNA encoding influenza nucleoprotein (NP) increased antibody titers up to 20-fold, to levels that could not be reached with pDNA alone. As little as 1 microg of pDNA formulated with Vaxfectin per muscle resulted in higher anti-NP titers than that obtained with 25 microg naked pDNA. The antibody titers in animals injected with Vaxfectin-pDNA remained higher than in the naked pDNA controls for at least 9 months. The enhancement in antibody titers was dependent on the Vaxfectin dose and was accomplished without diminishing the strong anti-NP cytolytic T cell response typical of pDNA-based vaccines. In rabbits, complexing pDNA with Vaxfectin enhanced antibody titers up to 50-fold with needle and syringe injections and also augmented humoral responses when combined with a needle-free injection device. Vaxfectin did not facilitate transfection and/or increase synthesis of beta-galactosidase reporter protein in muscle tissue. ELISPOT assays performed on bone marrow cells from vaccinated mice showed that Vaxfectin produced a three- to five-fold increase in the number of NP-specific plasma cells. Thus, Vaxfectin should be a useful adjuvant for enhancing pDNA-based vaccinations.
This article was published in Vaccine and referenced in Journal of Vaccines & Vaccination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version