alexa VDAC3 gating is activated by suppression of disulfide-bond formation between the N-terminal region and the bottom of the pore
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutical Regulatory Affairs: Open Access

Author(s): Mikiko Sodeoka, Kosuke Dodo

Abstract Share this page

The voltage-dependent anion channels (VDACs), VDAC1, VDAC2, and VDAC3, are pore-forming proteins that control metabolite flux between mitochondria and cytoplasm. VDAC1 and VDAC2 have voltage-dependent gating activity, whereas VDAC3 is thought to have weak activity. The aim of this study was to analyze the channel properties of all three human VDAC isoforms and to clarify the channel function of VDAC3. Bacterially expressed recombinant human VDAC proteins were reconstituted into artificial planar lipid bilayers and their gating activities were evaluated. VDAC1 and VDAC2 had typical voltage-dependent gating activity, whereas the gating of VDAC3 was weak, as reported. However, gating of VDAC3 was evoked by dithiothreitol (DTT) and S-nitrosoglutathione (GSNO), which are thought to suppress disulfide-bond formation. Several cysteine mutants of VDAC3 also exhibited typical voltage-gating. Our results indicate that channel gating was induced by reduction of a disulfide-bond linking the N-terminal region to the bottom of the pore. Thus, channel gating of VDAC3 might be controlled by redox sensing under physiological conditions.

This article was published in Biochim Biophys Acta and referenced in Pharmaceutical Regulatory Affairs: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version