alexa Vitamin D receptor as a drug discovery target.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Pinette KV, Yee YK, Amegadzie BY, Nagpal S

Abstract Share this page

Abstract 1alpha, 25-dihydroxyvitamin D3 [1,25 (OH)(2)D(3)], the active metabolite of vitamin D3, is known for the maintenance of normal skeleton architecture and mineral homeostasis. Apart form these traditional calcemic actions, 1,25 (OH)(3)D(1) and its synthetic analogs are increasingly recognized for their potent anti-proliferative, prodifferentiative and immunomodulatory activities. The calcemic and non-calcemic actions of 1,25 (OH)(2)D(3) and its synthetic analogs are mediated through vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors. Physiological and pharmacological actions of 1,25 (OH)(2)D(3) in various systems, along with the detection of VDR in target cells, have indicated potential applications of VDR ligands in inflammation, dermatological indications, osteoporosis, cancers and autoimmune diseases. VDR ligands have shown therapeutic potential in limited clinical trials as well as in animal models of these diseases. As a result, a VDR ligand, calcipotriol is in clinic for psoriasis and another, OCT, [2-oxa-1,25 (OH)(2)D(3)] is being developed as a topical agent for the same indication. Further, 1alpha,-hydroxyvitamin D3 (alphacalcidol), a prodrug of 1,25 (OH)(2)D(3) is in clinic and a synthetic VDR ligand, ED-71, is under consideration for approval in Japan for the treatment of osteoporosis. Interestingly, VDR ligands have shown not only preventive but also potent therapeutic anabolic activities in animal models of osteoporosis. However, the wide spread use of VDR ligands in above-mentioned indications is hampered by their major side effect, namely hypercalcemia. In view of this associated toxicity, synthetic VDR ligands with reduced calcemic potential have been synthesized with the ultimate aim of improving their therapeutic efficacy. This review presents recent advances in VDR biology, novel VDR ligands and therapeutic applications of VDR ligands.
This article was published in Mini Rev Med Chem and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords