alexa Vitamin E, oxidative stress, and inflammation.


Vitamins & Minerals

Author(s): Singh U, Devaraj S, Jialal I

Abstract Share this page

Abstract Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western world. Its incidence has also been increasing lately in developing countries. Several lines of evidence support a role for oxidative stress and inflammation in atherogenesis. Oxidation of lipoproteins is a hallmark in atherosclerosis. Oxidized low-density lipoprotein induces inflammation as it induces adhesion and influx of monocytes and influences cytokine release by monocytes. A number of proinflammatory cytokines such as interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) modulate monocyte adhesion to endothelium. C-reactive protein (CRP), a prototypic marker of inflammation, is a risk marker for CVD and it could contribute to atherosclerosis. Hence, dietary micronutrients having anti-inflammatory and antioxidant properties may have a potential beneficial effect with regard to cardiovascular disease. Vitamin E is a potent antioxidant with anti-inflammatory properties. Several lines of evidence suggest that among different forms of vitamin E, alpha-tocopherol (AT) has potential beneficial effects with regard to cardiovascular disease. AT supplementation in human subjects and animal models has been shown to decrease lipid peroxidation, superoxide (O2-) production by impairing the assembly of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase as well as by decreasing the expression of scavenger receptors (SR-A and CD36), particularly important in the formation of foam cells. AT therapy, especially at high doses, has been shown to decrease the release of proinflammatory cytokines, the chemokine IL-8 and plasminogen activator inhibitor-1 (PAI-1) levels as well as decrease adhesion of monocytes to endothelium. In addition, AT has been shown to decrease CRP levels, in patients with CVD and in those with risk factors for CVD. The mechanisms that account for nonantioxidant effects of AT include the inhibition of protein kinase C, 5-lipoxygenase, tyrosine-kinase as well as cyclooxygenase-2. Based on its antioxidant and anti-inflammatory activities, AT (at the appropriate dose and form) could have beneficial effects on cardiovascular disease in a high-risk population. This article was published in Annu Rev Nutr and referenced in Vitamins & Minerals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version