alexa Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model.
Biomedical Sciences

Biomedical Sciences

Biology and Medicine

Author(s): Factor VM, Laskowska D, Jensen MR, Woitach JT, Popescu NC,

Abstract Share this page

Abstract We have previously shown that chronic activation of mitogenic signaling induced by over-expression of c-myc and transforming growth factor-alpha (TGFalpha) transgenes in mouse liver induces a state of oxidative stress. We therefore proposed that increased reactive oxygen species (ROS) generation might be responsible for the extensive chromosomal damage and acceleration of hepatocarcinogenesis characteristic for TGFalpha/c-myc mice. In this study, we show that vitamin E (VE), a potent free radical scavenging antioxidant, is able to protect liver tissue against oxidative stress and suppress tumorigenic potential of c-myc oncogene. Dietary supplementation with VE, starting from weaning, decreased ROS generation coincident with a marked inhibition of hepatocyte proliferation while increasing the chromosomal as well as mtDNA stability in the liver. Similarly, dietary VE reduced liver dysplasia and increased viability of hepatocytes. At 6 mo of age, VE treatment decreased the incidence of adenomas by 65\% and prevented malignant conversion. These results indicate that ROS generated by over-expression of c-myc and TGFalpha in the liver are the primary carcinogenic agents in this animal model. Furthermore, the data demonstrate that dietary supplementation of VE can effectively inhibit liver cancer development.
This article was published in Proc Natl Acad Sci U S A and referenced in Biology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version