alexa Von Willebrand factor: molecular size and functional activity.
Nephrology

Nephrology

Journal of Nephrology & Therapeutics

Author(s): Furlan M

Abstract Share this page

Abstract Von Willebrand factor (vWF) is the largest protein found in plasma. It circulates in blood as a series of multimers ranging in size from 500 to 20,000 kDa. The variable molecular weight of vWF is due to differences in the number of subunits comprising the protein. vWF mediates platelet adhesion to subendothelium of the damaged blood vessel. Only the largest multimers are hemostatically active. Each vWF subunit contains binding sites for collagen and for platelet glycoproteins GPIb and GPIIb/IIIa. Multiple interactions of repeating binding sites in vWF multimers with adhesive protein(s) of the subendothelium and with receptors on the platelet surface lead to "irreversible" binding of platelets to the exposed subendothelium. Functional properties of vWF are typical of multisubunit proteins encoded by autosomal loci. The phenotype of von Willebrand disease is determined by the properties of the dysfunctional subunits which become incorporated into heteropolymeric forms of vWF. Absence of large vWF multimers, seen in type 2A von Willebrand disease and in myeloproliferative disorders, is associated with bleeding tendency. On the other hand, in patients with vWF multimers of supranormal size, as they occur in thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), there is an increased risk of thrombosis. Proteolytic enzyme(s) are involved in physiologic regulation of the polymeric size of vWF. We have purified from human plasma a protease cleaving vWF at the same peptide bond that is also cleaved in vivo. vWF was quite resistant against the protease in a physiologic buffer but was degraded at low salt concentration or in the presence of 1 M urea. It appears that a conformational change in the vWF molecule exposes the specific protease-sensitive peptide bond and thus enhances degradation of vWF multimers. In some variants of type 2A vWF, the cleavage site in the vWF subunit is more susceptible to proteolytic degradation than in normal vWF, whereas in patients with TTP or HUS the protease activity may be suppressed. vWF-degrading protease plays an important role in pathogenesis of congenital or acquired disorders of hemostasis and thrombosis.
This article was published in Ann Hematol and referenced in Journal of Nephrology & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 16th European Nephrology Conference
    October 02-04, 2017 Barcelona, Spain
  • 16th European Nephrology Conference
    October 02-04, 2017 Barcelona, Spain
  • World Nephrology Congress
    Osaka, Japan Oct 09-11, 2017
  • 13th World Nephrology Conference
    October 18-19, 2017 Dubai,UAE
  • 16th International Conference on Nephrology
    NOVEMBER 02-03, 2017 Atlanta, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords