alexa Water uptake and relaxation processes in mixed unlimited swelling hydrogels.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Michailova V, Titeva S, Kotsilkova R, Krusteva E, Minkov E

Abstract Share this page

Abstract The rheological oscillatory test parameters have been observed for highly concentrated hydroxypropylmethyl cellulose (HPMC), carboxymethylcellulose-sodium (NaCMC) and mixed HPMC/NaCMC hydrogels obtained by swelling of matrix tablets in 0.1 mol cm(-3) HCl and pH 6.8 phosphate buffer. The mechanical spectra of the gels have been analysed using theoretical models, i.e. a generalised Maxwell model and an adapted Maxwell model, both based on Ferry and Williams approximations. The relaxation time spectra as well as the parameters characteristic of linear viscoelastic behaviour have been calculated: zero shear viscosity (eta(0)), plateau moduli (G(N)(0), G(0)' and G(0)"), zero-relaxation time (tau(0)) and mean relaxation time (θ). The mechanical spectra of mixed HPMC/NaCMC hydrogels differ considerably from those of the pure ones, the type of the spectrum depending on the two polymers' ratios. In both media, the rheological models applied define the HPMC gels as homogeneous entangled networks, and those of NaCMC and mixed HPMC/NaCMC as heterogeneous physical gels. The relationship between the kinetic constants of water penetration and the mean relaxation times suggests that the molecular relaxation controls the water uptake velocity. With all the systems tested irrespective of pH of the aqueous phase, an inversely proportional dependence between the viscosity and the water penetration velocity has been noted. Since the degree of hydration is one of the factors determining the degree and velocity of drug release from the hydrogel matrices, the relation between the kinetic parameters of water penetration and the viscosity is a characteristic indicator for the gel structure, the degree of swelling and the drug release rate.
This article was published in Int J Pharm and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords