alexa Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H

Abstract Share this page

Abstract Strong coupling between localized particle plasmons and optical waveguide modes leads to drastic modifications of the transmission of metallic nanowire arrays on dielectric waveguide substrates. The coupling results in the formation of a new quasiparticle, a waveguide-plasmon polariton, with a surprisingly large Rabi splitting of 250 meV. Our experimental results agree well with scattering-matrix calculations and a polariton-type model. The effect provides an efficient tool for photonic band gap engineering in metallodielectric photonic crystal slabs. We show evidence of a full one-dimensional photonic band gap in resonant plasmon-waveguide structures. This article was published in Phys Rev Lett and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version