alexa Wavelet to predict bacterial ori and ter: a tendency towards a physical balance.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Song J, Ware A, Liu SL

Abstract Share this page

Abstract BACKGROUND: Chromosomal DNA replication in bacteria starts at the origin (ori) and the two replicores propagate in opposite directions up to the terminus (ter) region. We hypothesize that the two replicores need to reach ter at the same time to maintain a physical balance; DNA insertion would disrupt such a balance, requiring chromosomal rearrangements to restore the balance. To test this hypothesis, we needed to demonstrate that ori and ter are in a physical balance in bacterial chromosomes. Using wavelet analysis, we documented GC skew, AT skew, purine excess and keto excess on the published bacterial genomic sequences to locate the turning (minimum and maximum) points on the curves. Previously, the minimum point had been supposed to correlate with ori and the maximum to correlate with ter. RESULTS: We observed a strong tendency of the bacterial chromosomes towards a physical balance, with the minima and maxima corresponding to the known or putative ori and ter and being about half chromosome separated in most of the bacteria studied. A nonparametric method based on wavelet transformation was employed to perform significance tests for the predicted loci. CONCLUSIONS: The wavelet approach can reliably predict the ori and ter regions and the bacterial chromosomes have a strong tendency towards a physical balance between ori and ter.
This article was published in BMC Genomics and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords