alexa What causes in vivo muscle specific tension to increase following resistance training?
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Erskine RM, Jones DA, Maffulli N, Williams AG, Stewart CE,

Abstract Share this page

Abstract It is not known why in vivo muscle specific tension increases following resistance training in humans but changes in muscle fibre-type composition, increased single-fibre specific tension or lateral force transmission might provide explanations. Lateral force transmission would increase specific tension but decrease contraction velocity, thus not affecting maximal power per unit muscle volume. In vivo muscle specific tension, power output and muscle volume were determined in the quadriceps femoris of 42 young men, while myosin heavy chain (MyHC) isoform composition, single-fibre (SF) specific tension, SF maximal shortening velocity (V(max)) and SF peak power (W(max)) of the vastus lateralis were established in a subsample (n = 17) before and after high-intensity leg-extension resistance training (3 sessions week(-1) for 9 weeks). Following training, in vivo muscle specific tension increased by 17\% but the power output/muscle volume ratio remained unaltered. Furthermore, there was no relationship between the training-induced decrease in MyHC IIX and the change in specific tension in vivo. In addition, SF specific tension, V(max) and W(max) were unchanged following training. In conclusion, a change in fibre-type composition does not explain the increased in vivo specific tension, nor does it seem likely that increased myofilament packing occurred with resistance training. However, an unchanged in vivo power per unit muscle volume is in accordance with the notion of enhanced lateral force transmission after strength training. This article was published in Exp Physiol and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords