alexa What makes a molecule an anaesthetic? Studies on the mechanisms of anaesthesia using a physicochemical approach.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Sear JW

Abstract Share this page

Recent studies of mechanisms of anaesthesia have been mainly 'target orientated', investigating the activity of both volatile and i.v. agents at putative sites of action. An alternative approach is one that is 'ligand orientated', focusing on the properties of molecules that define their immobilizing ability and secondly define their potency. The use of conventional descriptors (such as non-polar solubility or the octanol-water partition coefficient [Log P]) are limited in their utility as predictors of potency as they represent three-dimensional molecular properties as a one-dimensional parameter. Using different computer-based molecular modelling methods (molecular similarity studies and comparative molecular field analysis [CoMFA]), we have identified the molecular bases of the activity of structurally diverse anaesthetics, such that they can be described as a single model based on the spatial distribution of molecular bulk and electrostatic potential. The same approach can also be used to model other properties of anaesthetic agents, such as cardiovascular depression. The present data suggest that, for the i.v. agents, it may be difficult to separate immobilizing (anaesthetic) activity and cardiovascular depression within a single molecule.

This article was published in Br J Anaesth. and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]om

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords