alexa What makes a molecule an anaesthetic? Studies on the mechanisms of anaesthesia using a physicochemical approach.


Journal of Clinical Toxicology

Author(s): Sear JW

Abstract Share this page

Recent studies of mechanisms of anaesthesia have been mainly 'target orientated', investigating the activity of both volatile and i.v. agents at putative sites of action. An alternative approach is one that is 'ligand orientated', focusing on the properties of molecules that define their immobilizing ability and secondly define their potency. The use of conventional descriptors (such as non-polar solubility or the octanol-water partition coefficient [Log P]) are limited in their utility as predictors of potency as they represent three-dimensional molecular properties as a one-dimensional parameter. Using different computer-based molecular modelling methods (molecular similarity studies and comparative molecular field analysis [CoMFA]), we have identified the molecular bases of the activity of structurally diverse anaesthetics, such that they can be described as a single model based on the spatial distribution of molecular bulk and electrostatic potential. The same approach can also be used to model other properties of anaesthetic agents, such as cardiovascular depression. The present data suggest that, for the i.v. agents, it may be difficult to separate immobilizing (anaesthetic) activity and cardiovascular depression within a single molecule.

This article was published in Br J Anaesth. and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version