alexa Why do bacteria divide?


Biochemistry & Analytical Biochemistry

Author(s): Norris V

Abstract Share this page

Abstract The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life - Life as independent of its constituents - is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass - its cellular connectivity - would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity - Life on the Scales of Equilibria - is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias 'hyperstructures.' The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence - Competitive Coherence - is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell's contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself.
This article was published in Front Microbiol and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version