alexa Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation.
Pediatrics

Pediatrics

Journal of Pediatric Neurology and Medicine

Author(s): Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J

Abstract Share this page

Abstract Wnt signaling in development and adult tissue homeostasis requires tight regulation to prevent patterning abnormalities and tumor formation. Here, we show that the maternal Wnt antagonist Dkk1 downregulates both the canonical and non-canonical signaling that are required for the correct establishment of the axes of the Xenopus embryo. We find that the target Wnts of Dkk activity are maternal Wnt5a and Wnt11, and that both Wnts are essential for canonical and non-canonical signaling. We determine that Wnt5a and Wnt11 form a previously unrecognized complex. This work suggests a new aspect of Wnt signaling: two Wnts acting in a complex together to regulate embryonic patterning. This article was published in Development and referenced in Journal of Pediatric Neurology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords