alexa Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Koh JY, Choi DW

Abstract Share this page

Abstract Neuronal injury induced by the excessive release of endogenous Zn2+ at central glutamatergic synapses may contribute to the pathogenesis of epileptic brain damage. We explored the possibility that N-methyl-D-aspartate receptors might be involved in Zn2+ neurotoxicity. Exposure of murine cortical cell cultures to 300-1000 microM concentrations of Zn2+ for 15 min resulted in widespread neuronal degeneration, accompanied by the release of lactate dehydrogenase to the bathing medium. Both non-competitive and competitive N-methyl-D-aspartate antagonists attenuated this degeneration. However, the participation of N-methyl-D-aspartate receptors in Zn2+ neurotoxicity was atypical. Removal of extracellular Ca2+ attenuated N-methyl-D-aspartate neurotoxicity but potentiated Zn2+ neurotoxicity, whereas increasing extracellular Ca2+ potentiated N-methyl-D-aspartate neurotoxicity but attenuated Zn2+ neurotoxicity. Furthermore, the nature of the antagonism of Zn2+ neurotoxicity induced by N-methyl-D-aspartate antagonists was qualitatively different from that seen with other N-methyl-D-aspartate receptor-mediated events. The block of Zn2+ neurotoxicity induced by the non-competitive N-methyl-D-aspartate antagonist MK-801 was better overcome by increasing Zn2+ concentration than the block induced by the competitive antagonists D-aminophosphonovalerate and CGS-19755. We hypothesize that N-methyl-D-aspartate receptor-gated channels contribute to Zn2+ toxicity by providing a route of Zn2+ influx into neurons. Consistent with this idea, intracellular Zn2+ visualized by the fluorescent Zn2+ chelator, N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide, rose during Zn2+ exposure; this rise was increased by N-methyl-D-aspartate and reduced by either N-methyl-D-aspartate antagonists or high Ca2+.2+ in neuronal cell homeostasis.
This article was published in Neuroscience and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords