alexa ZnO Nanoparticles-Red Sandalwood Conjugate: A Promising Anti-Diabetic Agent.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Kitture R, Chordiya K, Gaware S, Ghosh S, More PA,

Abstract Share this page

Abstract With the advances in nanoscience and nanotechnology the interest of researchers has expanded to interdisciplinary domain like bio-medical applications. Among such domains, one of the most important areas explored meticulously is the development of promising solutions in diabetes therapeutics. The disease associated with metabolic disorder, is one of the major challenges, due to its ever-increasing number of patients. The adverse effects of the synthetic enzymes like α-amylase and α-glucosidase inhibitors have invited many scientists to develop promising contender with minimal side-effects. On the other hand, Zinc has strong role in insulin synthesis, storage and secretion and thus its deficiency can be related to diabetes. In this context we have explored natural extract of Red Sandalwood (RSW) as a potent anti-diabetic agent, in conjugation with ZnO nanoparticles. ZnO nanoparticles have been synthesized via soft chemistry routes and duly characterized for their phase formation with the help of X-ray diffraction technique and Field-Emission Scanning Electron Microscopy. These monodispersed nanoparticles, -20 nm in size, were further conjugated to RSW extract. The conjugation chemistry was studied via Fourier transform infrared spectroscopy, UV-visible spectroscopy. Extract loading percentage was found from thermo-gravimetric analysis. 65\% of the RSW extract was found conjugated to the ZnO nanoparticles. The anti-diabetic activity was assessed with the help of like α-amylase and α-glucosidase inhibition assay with murine pancreatic and small intestinal extracts. It was observed that the conjugated ZnO-RSW nanoparticles showed excellent activity against the crude murine pancreatic glucosidase as compared to the individual ZnO nanoparticles and the RSW extract. The ZnO-RSW conjugate showed 61.93\% of inhibition while the bare ZnO nanoparticles and RSW showed 21.48\% and 5.90\% respectively.
This article was published in J Nanosci Nanotechnol and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords