Renal Injury in Calcium-Alkali Syndrome
Hiromichi Yoshizawa, Yoshiyuki Morishita* and Eiji Kusano
Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan

Abstract
Calcium-alkali syndrome is characterized by hypercalcemia, renal injury and metabolic alkalosis. Calcium-alkali syndrome caused by calcium carbonate and vitamin D has been increasing in association with their growing use for the treatment and prevention of osteoporosis. Renal injury is the most critical factor determining the severity and prognosis of this syndrome. This review focuses on the mechanism and clinical aspects of renal injury in calcium-alkali syndrome.

Introduction
Calcium-alkali syndrome is characterized by hypercalcemia, renal injury and metabolic alkalosis. Calcium-alkali syndrome was previously called milk-alkali syndrome because it was first reported in a patient who was treated for gastric ulcer using milk and alkaline powders that consisted of magnesium and sodium bicarbonate for neutralization of stomach acidity [1]. Renal injury in milk-alkali syndrome is considered a severe complication because approximately one-third of cases resulted in permanent renal impairment [2]. The incidence of milk-alkali syndrome declined with the development of new drugs such as histamine H2 blockers and doxycycline for treatment of gastric ulcer. However, resurgence of this syndrome occurred in the 1990s as a result of increased osteoporosis awareness and common use of calcium carbonate, which supplied both calcium and absorbable alkali, and vitamin D for treatment and prevention of osteoporosis [2,3]. Since the "milk" in milk-alkali syndrome no longer reflects the etiologic origin of the modern version of this syndrome, it was recommended that its name be changed to calcium-alkali syndrome [4]. Calcium-alkali syndrome is now considered one of the most common causes of hypercalcemia [5,6]. Renal injury in calcium-alkali syndrome is the most critical factor determining its severity and prognosis. In this review, we focus on the mechanism and clinical aspects of renal injury in calcium-alkali syndrome.

Diagnosis of Calcium-Alkali Syndrome
The diagnosis of calcium-alkali syndrome requires a history of taking such drugs as calcium carbonate, vitamin D or thiazides and finding of hypercalcemia, metabolic alkalosis, and variable degrees of renal insufficiency. The symptoms such as nausea, vomiting, anorexia, headache, dizziness, vertigo, and confusion may occur within a few days. Muscle aches, psychosis, tremor, polyuria, polydipsia, pruritus, and abnormal calcification are chronic symptoms [4]. Severe hypercalcemia is always present, and combination of an elevated serum bicarbonate and high pH level in the presence of renal failure are differential diagnosis. Level of 1, 25-OH vitamin D and intact PTH are generally suppressed. The intact PTH level may need to be measured to exclude primary hyperparathyroidism. Malignancy should be excluded, because it is one etiology of hypercalcemia.

Subtypes of Renal Injury in Calcium-Alkali Syndrome
As shown in Table 1, calcium-alkali syndrome has been categorized into acute, subacute and chronic types [7,8]. The acute type develops within a few days to weeks after the initiation of treatment with calcium carbonate. Recovery from this type of renal injury occurs rapidly after cessation of calcium carbonate ingestion. The sub acute type occurs during therapy with calcium carbonate that has been used intermittently for years. In contrast to the acute type, there is less rapid improvement and recovery of renal function is slower. The chronic type occurs after a long history of ingestion of large amounts of calcium carbonate. The renal insufficiency of this type does not show complete recovery.

Physiology and Pathology of Renal Injury in Calcium-Alkali Syndrome
As mentioned below, although the basic mechanism of acute, subacute and chronic type of renal injury in calcium-alkali syndrome is not considered to be different, the duration and severity of pathological changes in kidney determine the acute, subacute and chronic stages by inducing subsequent calcium depositions and infiltration of inflammatory cells that contribute to chronic renal changes such as renal fibrosis or tubular atrophy.

Hypercalcemia is caused when the calcium input by dietary intake and intestinal absorption exceeds the calcium output by primarily renal excretion. Factors that can increase calcium input include increased dietary calcium intake, ingestion of supplemental calcium with enhanced intestinal absorption of calcium from stimulation by vitamin D. Since hypercalcemia has a natriuretic and diuretic effect, conceivably by activating the calcium-sensing receptor (CaSR), it leads to intravascular depletion and thereby decreases the glomerular filtration rate (GFR), which reduces the filtration of calcium [9,10]. The use of diuretics such as thiazides may accelerate the decrease of calcium excretion by inhibiting the thiazide-sensitive sodium chloride co-transporter and may contribute to hypercalcemia and hypovolemia [11]. This hypovolemia increases the reabsorption of calcium and bicarbonate in the proximal convoluted tubules. Hypercalcemia also causes renal vasoconstriction leading to decreased GFR and reducing the amount of calcium and bicarbonate excretion [8,12]. Then, elevation

*Corresponding author: Dr. Y. Morishita, Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-city, Tochigi 329-0498, Japan, Tel: 81-285-44-7346; Fax: 81-285-44-4869; E-mail: ymor@jichi.ac.jp
Received January 31, 2012; Accepted February 27, 2012; Published February 29, 2012
Copyright: © Yoshizawa H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Healthcare practitioners should bear this syndrome in mind when carbonate and vitamin D. Since it may cause serious renal injury, calcium level and renal function. Carbonate and vitamin D should be need close monitoring of serum Furosemide may be used to enhance calciuresis. In refractory cases, hemodialysis may occasionally be necessary. Alkali. Acute kidney injury is also reversible by this therapy in most cases. In refractory cases, hemodialysis may occasionally be necessary. To break the malignant cycle induced by exposure to calcium and expansion with saline and cessation of calcium carbonate ingestion.

References