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Abstract
Diabetic nephropathy is the most common cause of end-stage renal disease. It is assumed that hyperglycemia is 

one of the major systemic risk factors for diabetic complications. Numerous hypotheses exist to enlighten the adverse 
effect of hyperglycemia. One of these hypotheses is the activation of the calcium- and phospholipid-dependent protein 
kinase C signaling pathway by hyperglycemia which subsequently mediates cellular response and affects gene 
expression and protein function to cause cellular dysfunction and damage. It is well known that the intracellular protein 
kinase C activation is achieved by the elevated diacylglycerol levels in vascular tissues as well as in nonvascular 
tissues. Besides diacylglycerol, oxidative stress has also been reported to induce prolonged activation of protein 
kinase C within cells through the reactive oxygen species. Activation of protein kinase C and oxidative stress have 
been associated with vascular alterations such as increases in permeability of endothelial cells, extracellular matrix 
synthesis, cell growth and apoptosis, angiogenesis, and cytokines activation and inhibition. These derangements in 
vascular cell homeostasis caused by the activation protein kinase C as well as oxidative stress are connected to the 
occurrence of pathologies affecting large vessel and small vessel complications. Accumulating evidences have also 
shown that the inflammation process is an essential pathogenetic mechanism in diabetic nephropathy. Therefore, 
modulation of this process is an important target for both metabolic and hemodynamic derangements in diabetic 
nephropathy. In this review, we will discusses the role of protein kinase C, oxidative stress and inflammation process 
and the signaling pathway in the pathogenesis of diabetic nephropathy.
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Introduction
Diabetes mellitus (DM) is a complex syndrome characterized by 

absolute or relative insulin deficiency leading to hyperglycemia and 
an altered metabolism of glucose, fat, and protein. The major cause 
of metabolic dysfunction in DM is its complications, which are the 
result of interaction among systemic metabolic abnormalities such 
as hyperglycemia, dyslipidemia, and local tissue responses to toxic 
metabolites. Complications involve large vessel obstructions, such 
as coronary artery diseases and microvascular pathologies, such as 
retinopathy, neuropathy, and nephropathy. Accordingly, patients 
with diabetes have a much higher risk of myocardial infarction, 
stroke and limb amputation. Large prospective clinical studies show 
a strong relationship between glycaemia and diabetic microvascular 
complications in both type 1 and type 2 [1,2]. 

Diabetic nephropathy (DN) is a leading cause of chronic kidney 
disease that progresses to end-stage renal disease (ESRD) and affects 
30% of patients with type 1 DM and up to 25% of all patients with 
type 2 DM. DN is an extremely frequent complication of DM that 
profoundly contributes to patient morbidity and mortality [3-5]. The 
pathophysiologic changes in DN include the occurrence of persistent 
microalbuminuria and hyperfiltration followed by a hyperplasia/
hypertrophy of various cell types of the glomerulus and tubules and 
associated with the thickening of glomerular and tubular basement 
membranes as well as accumulation of extracellular matrix (ECM) 
components. Other changes include hyalinization of arterioles 
and thickening of branches of intrarenal arteries that leads to the 
impairment in autoregulation of glomerular microcirculation, which 
could augment the renal damage [6,7]. Advanced DN is frequently 

characterized by diffuse glomerulosclerosis and may sometimes exhibit 
a distinctive morphological appearance, that is, the nodular form of 
glomerulosclerosis, as first described by Kimmelstiel and Wilson 
in 1936 [8]. Several mechanisms contribute to the development of 
DN, including an interaction between metabolic abnormalities, 
hemodynamic changes, genetic predisposition, inflammatory milieu 
and oxidative stress constituting a continuous perpetuation of injury 
factors for the initiation and progression of DN [9].

Multiple biochemical pathways have been proposed to connect 
the adverse effects of hyperglycemia with vascular complications. 
Although a single theory has not been established to explain all these 
changes, a few has emerged that can include most of the data that have 
accumulated in this area. Hyperglycemia can lead to the activation 
of several cellular pathways, including increased activation of the 
polyol pathway flux (in which glucose is reduced to sorbitol, lowering 
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levels of both reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) and reduced glutathione) [10], increased advanced 
glycation end-product (AGE) formation [11], increased shunting of 
excess glucose through the hexosamine pathway (mediating increased 
transcription of genes for inflammatory cytokines) [12], and activation 
of the diacylglycerol (DAG)-protein kinase (PK) C-mitogen-activated 
protein kinase (MAPK) pathways (effects ranging from vascular 
occlusion to expression of proinflammatory genes) [13-15]. All of these 
biochemical changes are activated by a common mechanism, that is, 
overproduction of superoxide radicals and associated oxidant stress 
[16], which can ultimately lead to increased formation of ECM proteins 
in the kidney, contributing to renal dysfunction [17]. The DAG-PKC 
pathway has been shown to be important in vascular cells to regulate 
permeability, contractility, ECM, cell growth, angiogenesis, cytokine 
actions and leukocyte adhesion [18,19]. Accumulating evidences have 
also demonstrated that high glucose can activate the proinflammatory 
transcription factor NF-κB, resulting in increased inflammatory gene 
expression [20-23]. As suggested by previous studies, it is conceivable 
that there may be a crosstalk between the PKC-MAPK pathways, 
oxidative stress and inflammation process, and all are in synchrony may 
amplify signaling events to cause DN [24-26] (Figure 1). In this review, 
we discuss the role of PKC actions, oxidative stress and inflammatory 
process as well as related signaling cascade in the development of DN.

PKC at a glance

PKC is a serine/threonine-related protein kinase that plays a key 
role in many cellular functions and affects many signal transduction 
pathways [27]. Coordinated regulation of this enzyme activation 
is crucial for normal cell functions; in contrast, unusually persistent 
activation of PKC may lead to uncontrollable growth. Biochemical 

and molecular cloning analysis have revealed that the enzyme 
comprises a large family with multiple isoforms exhibiting individual 
characteristics and distinct patterns of tissue distribution [28]. These 
kinases contain a highly conserved C-terminal catalytic domain 
(consist of motifs required for ATP/substrate-binding and catalysis) 
and a regulatory domain that maintains the enzyme in an inactive 
conformation. The regulatory domains reside in the NH2 terminus of 
the protein and contain an autoinhibitory pseudosubstrate domain and 
two discrete membrane targeting modules, which is C1 and C2 [29].To 
date, 12 PKC isozymes have been identified and classified into three 
groups based on differences in their NH2-terminal regulatory domain 
structure [19]. The first discovered is the conventional PKCs (α, β1, β2, 
γ), which are activated by phosphatidylserine, calcium, and DAG or 
phorbol esters such as phorbol 12-myristate 13-acetate (PMA). The 
next well characterized are the novel PKCs (δ, ε, θ, η, and μ), which 
are activated by phosphatidylserine, DAG or PMA, but not by calcium. 
The last isozymes are the atypical PKCs (ζ, μ and λ), which are not 
activated by calcium, DAG, or PMA (Figure 2). Traditionally, the 
activation of calcium-dependent PKC isoforms involves the hydrolysis 
of phosphatidylinositides (PI) and generation of inositol-(1,4,5)-
triphosphate (IP3) which lead the mobilization of intracellular calcium, 
a soluble ligand that binds to the C2 domain and increases its affinity 
for membranes. Once anchored to membranes, the calcium-dependent 
PKC isoforms diffuses within the lipid bilayer and participates in a 
secondary C1 domain interaction with DAG which in turn leads to 
a conformational change of calcium-dependent PKC isoforms that 
expels the autoinhibitory pseudosubstrate domain and facilitates PKC 
activation [29]. PKC translocation to the plasma membrane generally 
has been considered the hallmark of activation and has been used as a 
surrogate measure of PKC isoform activation in cells. 

Figure 1: Hyperglycemia-induced activation of molecular pathways associated with diabetic complications. Diabetes and associated hyperglycemia can lead to 
increased activation of diacylglycerol (DAG)-protein kinase C (PKC)-mitogen activated protein kinase (MAPK), oxidative stress and circulating inflammatory cells. All 
of these events can lead to production and increased action of various growth factors and cytokines such as transforming growth factor (TGF)-β, connective tissue 
growth factor (CTGF), and vascular endothelial growth factor (VEGF) as well as activation of transcription factors such as nuclear factor (NF)-κB, and therefore will lead 
to infiltration, accumulation, and activation of extracellular matrix proteins in renal tissues, all of which over time can induce the development of diabetic nephropathy.
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The activation of DAG-PKC-MAPK pathway in diabetes

Increases in total DAG contents have been demonstrated in a 
variety of tissues associated with diabetic vascular complications, 
such as retina [30], aorta and heart [31], and renal glomeruli [32]. 
Following glucose entry into vascular and renal cells through GLUT1, 
it is phosphorylated and then converted to fructose 6-phosphate and 
glyceraldehyde 3-phosphate. By the action of various transferases 
and phosphatases, glyceraldehyde 3-phosphate forms glycerol 
phosphate, a precursor of DAG, which in turn directly or indirectly 
activates PKC isoforms [33,34]. The source of DAG that activates PKC 
can be derived from the hydrolysis of PI or from the metabolism of 
phosphatidylcholine (PC) by phospholipase C (PLC) or phospholipase 
D (PLD) [27]. Furthermore, the activation of PKC will regulate 
various vascular functions by modulating enzymatic activities such 
as cytosolic phospholipase A2 and Na+-K+-ATPase, as well as gene 
expression of ECM components and contractile proteins [35-37]. 
Upon activation, PKC can transmit signals to the nucleus via different 
signal transduction pathways and activate MAPK through activating 
MAPK kinase (MAPKK).

Activation of the PKC-MAPK pathway induces enhanced ECM 
protein and TGF-β expression in glomerular mesangial cells, suggesting 
that this pathway might be responsible for PKC-related abnormalities 
in diabetic glomeruli, leading to the development of DN [38-40]. From 
various PKC isoforms in vascular cells, PKC-α, -β1, -β2, -δ and –ζ 
appear to be preferentially activated by high glucose concentrations in 
various cell culture models and in the glomerular cells of diabetic rats 
[41-43]. Menne et al. [44] have demonstrated that diabetic PKC-α-/- 
mice were protected from albuminuria by perpetuating the loss of the 
negatively charged heparin sulfate and upregulation of glomerular 
vascular endothelial growth factor (VEGF) expression [44]. Moreover, 
previous animal studies have shown that deletion of the PKC-β gene or 
treatment with a selective PKC-β inhibitor (LY333531 or ruboxistaurin) 
was associated with normalization of hemodynamic changes, ECM 
production, expression of connective tissue growth factor (CTGF), 
production of TGF-β, and histological features of glomerular damage 
in animal models of diabetes [41, 45-47]. High ambient glucose-
heightened extracellular signal-regulated kinase (ERK) and PKC-δ 
activity was shown to enhance cellular responsiveness to TGF-β and 
exacerbated the production of ECM proteins by mesangial cells [48]. In 

addition, high glucose-induced PKC-ζ activity was shown to mediate 
F-actin disassembly and alter mesangial cell contractile responses to 
endothelin-1 [49]. Recently, we have also shown the critical role of 
PKC-α and –β1 isozymes-MAPK pathways in the development of DN. 
We demonstrated that high glucose-induced the activity of PKC-α 
and –β1 in kidney tissues of diabetic rats and as a result, increased the 
protein levels of ERK1/2, VEGF, and TGF-β1, which were ameliorated 
by curcumin, a powerful antioxidant [50]. It has become evident 
that the aberrant activation of the PKC isozymes and other signaling 
mediators by glucose can alter the response of the mesangial cells to 
external stimuli. Such potential aberrations in cell signaling by glucose 
stress may have an important role in the progression of DN [48,49]. 

MAPK cascades comprise one of the major signaling systems by 
which cells transduce and integrate diverse intracellular signals. The 
MAPKs, including ERK 1 and 2 (p44/p42 MAPKs), c-Jun N-terminal 
kinase/stress-activated protein kinase (JNK/SAPK), and p38 MAPK, 
are all involved in hyperglycemia-induced ECM accumulation in DN. 
ERKs are activated primarily in response to proliferated stimuli, whereas 
the other MAPKs are activated primarily in response to inflammatory 
and stressful stimuli, including oxidant and osmotic stress. Previous 
study has been demonstrated that in diabetic condition, nonenzymatic 
glycosylation of protein, DAG-PKC pathway, and oxidative stress 
could activate p38 MAPK, resulting in the phosphorylation of 
transcriptional factor and alteration of expression of genes, which 
participated in the development of DN [51]. In vitro studies have also 
shown that hyperglycemia could activate the p38 MAPK signaling 
pathway in renal cells and induced the phosphorylation of p38 MAPK 
in mesangial cells which promote the mesangial cells to produced 
fibronectin [52-55]. ERK, which is one of the MAPKs, is also an 
important kinase in the intracellular signal transduction system leading 
to cell proliferation and ECM synthesis [56]. Isono et al. [57] confirmed 
that ERK was activated in mesangial cells cultured in high glucose 
and in the glomeruli of diabetic rats [57]. Previous study has shown 
that high glucose-induced upregulation of ECM protein, fibronectin, 
occurs via activation of MAPK/ERK pathway, and this upregulation 
was prevented by treatment with PKC blocker, chelerythrine, which 
suggests that PKC is an upstream mediator of MAPK [58]. Recently, 
we have also demonstrated that the protein expression levels of 
ERK1/2, p38MAPK, and JNK were upregulated in kidney tissues of 
STZ-induced diabetic mice, which were attenuated by Ang-II type 1 
receptor blocker [59].

Figure 2: Domain structures of classical, novel, and atypical protein kinase C (PKC). The figure shows a comparison of the protein architecture of the various subgroups 
of the PKC subfamily. All PKC regulatory domains have a pseudosubstrate domain (shown in green). Conventional and novel PKC contain C1 domain which mediate 
binding to diacylglycerol (DAG) and phorbol 12-myristate 13-acetate (PMA) and C2 domain which has a function as calcium-dependent phospholipid binding in the case 
of conventional PKC and a serine/threonine-kinase domain. Novel PKC C2 domains do not bind calcium. The atypical PKC, which lack the C2 region, are not activated 
by calcium, DAG, or PMA, but their activation depends on phosphatidylserine and cis-unsaturated fatty acids.
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Oxidative Stress in Diabetic Nephropathy

Increased oxidative stress has been shown in patients with diabetes 
and has been implicated in the development and progression of 
diabetic microvascular complication, including DN [60,61]. Oxidative 
stress is caused by an imbalance between the production of reactive 
oxygen and a biological system’s ability to readily detoxify the reactive 
intermediates or easily repair the resulting damage. All forms of life 
maintain a reducing environment within their cells. This reducing 
environment is preserved by enzymes that maintain the reduced state 
through a constant input of metabolic energy. Disturbances in this 
normal redox state can cause toxic effects through the production of 
peroxides and free radicals that damage all components of the cell, 
including proteins, lipids, and DNA. 

Crosstalk between PKC and ROS

There are a number of macromolecules that have been implicated 
for increased generation of ROS, such as, NAD(P)H oxidase, AGE, and 
uncoupled nitric oxide synthase (NOS). Numerous reports have shown 
that NAD(P)H oxidase, which is primarily found in phagocytic cells, 
is the main source of ROS in nonphagocytic cells such as endothelial 
cells [62], adventitial cells [63], mesangial cells [64], podocytes [65], 
and fibroblasts [64]. NAD(P)H oxidase consists of several membrane-
bound subunits, namely, gp91phox, Nox, and p22phox and cytosolic 
subunits, namely, p47phox and p67phox. Upon activation, some 
subunits of NAD(P)H oxidase are phosphorylated and translocated 
to the membrane by several kinases, including PKC, and form the 
catalytically active oxidase [66]. The significance of NAD(P)H oxidase 
in the pathogenesis of DN is underscored by the finding that apocynin, a 
pharmacological inhibitor of NAD(P)H oxidase suppresses proteinuria 
and mesangial matrix expansion in STZ-induced diabetic rats and in 
db/db mice [67,68]. Lee et al. [69] have demonstrated that NAD(P)H 
oxidase inhibitors, apocynin and diphenylene iodonium (DPI), and an 
inhibitor of mitochondrial electron transfer chain complex I, rotenone, 
effectively block high glucose-induced ROS generation in mesangial 
cells and high glucose-induced ECM protein secretion by tubular 
epithelial cells, which suggest that both NAD(P)H oxidase system 
and mitochondrial metabolism are involved in high glucose-induced 
diabetic vascular complications [69].

Numerous reports have suggested that PKC, such as classical PKC 
isozymes (α and β) and atypical PKC-ζ, play an important role in the 
activation of NAD(P)H oxidase [70-74]. Kitada et al. [73] reported 
that overexpression and translocation to the membrane of NAD(P)
H oxidase subunits, p47phox and p67phox, were correlated with 
increased NAD(P)H oxidase activity, which resulted in oxidative 
stress in diabetic glomeruli. They also demonstrated that membranous 
translocation of p47phox and p67phox were dependent on the PKC-β 
activation and this activation was suppressed by ruboxistaurin, a 
specific PKC-β inhibitor [73]. 

Previous study has also shown that high glucose-induced ROS 
generation in mesangial cells is effectively blocked by calphostin 
C, a PKC inhibitor, which suggest that high glucose-induced ROS 
generation in mesangial cells is PKC dependent [70]. Moreover, it has 
reported that high glucose-induced PKC activation in mesangial cells is 
effectively blocked by antioxidants such as vitamin E, N-acetyl cysteine, 
and taurine, suggesting that there is a crosstalk between high-glucose-
induced ROS and PKC activation [75].

Role of PKC-ROS in proteinuria

DN is characterized with abnormalities in the glomerular 
endothelium and mesangium as well as in podocytes or glomerular 
visceral epithelial cells. Podocytes cover the outer aspect of the 
glomerular basement membrane via foot processes, and modified 
tight junctions between adjacent cells forms the slit diaphragm. This 
unique structure is specially designed to allow filtration and represents 
the final barrier to albumin entering the urinary space [76]. The foot 
processes of podocytes, in DN, broaden and efface, and there is a loss 
of podocyte-specific proteins such as nephrin and eventually loss of 
podocytes themselves. Such changes in podocytes may contribute to 
the development of albuminuria, a hallmark of DN. 

Several lines of evidence showed that VEGF-A, the best 
characterized angiogenic factor, is a critical crosstalk protein among 
the three components of the glomerular filtration barrier, which is, a 
fenestrated endothelium, a 300-350 nm thick glomerular basement 
membrane, and the podocyte [77]. VEGF is a member of a family of 
secreted 34 – 42 kDa dimeric glycoproteins related to the platelet-
derived growth factor family. As homodimeric glycoproteins, VEGF 
bind to two receptors: VEGFR1 (Flt-1) and VEGFR2 (Flk-1). It is 
highly expressed in podocytes, distal tubules, collecting ducts, and to a 
lower degree, proximal tubules [78]. In DN, mesangial cells transform 
into a prosclerotic phenotype and secrete VEGF in response to several 
factors relevant to diabetes, including TGF-β, AGEs, and angiotensin II 
[79,80]. Moreover, the overproduction of ROS by podocytes increases 
urinary protein excretion and podocyte injury and might contribute to 
the initiation and progression of DN.

The increased expression of VEGF in the diabetic kidney is 
associated with hyperfiltration, proteinuria and glomerular hypertrophy 
[81], and these conditions are suppressed by the blocking of VEGF 
[82]. An acute infusion of VEGF into experimental animals markedly 
increased permeability to albumin in the kidney and other tissues 
supports the important role of VEGF in the pathogenesis of proteinuria 
in the diabetic kidney [83]. Very recent study has also suggested that 
increased podocyte Vegf164 (the most abundant Vegf isoform) signaling 
dramatically worsens DN in a STZ-induced mouse model of diabetes, 
resulting in nodular glomerulosclerosis and massive proteinuria [84]. 
Lee et al. [85] demonstrated that high glucose significantly increases 
intracellular ROS and upregulates VEGF mRNA and protein expression 
in podocytes. They also shown that antioxidants inhibit high-glucose- 
and PMA-induced VEGF expression and that inhibition of PKC by a 
PKC-β inhibitor, hispidin, or by a specific PKC inhibitor, GF109203X, 
also suppresses high-glucose- and PMA-induced VEGF expression 
in podocytes. They suggested that ROS are signaling molecules that 
are both downstream and upstream of PKC, and provide signal 
amplification in high-glucose-induced VEGF expression by podocytes 
[85]. In primary cultured rat mesangial cells, exposure to high glucose 
significantly increased VEGF mRNA, which is blocked by antioxidant, 
Tempol, and antisense oligonucleotides directed against p22phox, 
a NADPH subunit. Furthermore, high glucose-induced VEGF 
mRNA was also prevented by PKC-β1 inhibitor, suggesting a possible 
connection between VEGF and ROS as well as PKC [86].

Role of ROS-PKC in ECM accumulation

In diabetes, the expression and accumulation of ECM protein 
are regulated by peptide growth factors, such as platelet-derived 
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growth factor, angiotensin II, and TGF-β1 [87-89]. Of these, TGF-β1, 
a major mediator of the hypertrophic and prosclerotic changes in 
diabetic kidney disease, contributes to glomerular ECM accumulation 
by increasing the expression of ECM genes, such as collagen I and 
IV, and fibronectin and by decreasing ECM degradation through 
elevated expression of plasminogen activator inhibitor-1 (PAI-1) [90]. 
Moreover, TGF-β1 promotes cell-matrix interactions by upregulating 
integrins, the cell surface receptors for matrix [91]. TGF-β1 expression 
and activation play a pathogenic role in mesangial expansion in DN. 
High-glucose concentration upregulates the expression and bioactivity 
of TGF-β1 in mesangial cells [92], in renal cortical fibroblasts [93], and 
in renal proximal tubules [94], suggesting that almost all renal cell 
types are involved by high ambient glucose. 

In animal studies, the development of diabetic renal disease 
is likely caused by the increased activity of the renal TGF-β system. 
Antagonism of TGF-β by neutralizing monoclonal antibodies in 
STZ-induced diabetic mice prevented glomerular hypertrophy 
and attenuated the increase TGF-β1, α1(IV) collagen, and mRNA 
fibronectin [95]. In addition, treatment with monoclonal anti-TGF-β1 
antibody in db/db mice, prevented the mesangial matrix expansion 
and preserved the creatinine clearance [96]. These studies strongly 
support the hypothesis that overactivity of the TGF-β in the kidney is 
a crucial mediator of diabetic renal hypertrophy and mesangial matrix 
expansion. Ha et al. [97] has shown that high glucose-induce ROS, 
thus activated signal transduction cascade (PKC, MAPK, and janus 
kinase/signal transducers) and transcription factors (NF-κB, activated 
protein-1), up-regulate TGF-β1, angiotensin II (Ang II), and monocyte 
chemoattractant protein-1 (MCP-1) gene and protein expression and 
promote formation of AGE. In turn, PKC, TGF-β1, Ang II, and AGE 
also induce cellular ROS and signal through ROS leading to enhanced 
ECM synthesis [97]. 

Inflammation in diabetic nephropathy

The pathogenesis of DM is characterized by activation of 
multiple molecular pathways, and accumulating evidence now 
suggests that inflammation have a central role in the development 
of diabetic complications, including DN. It has been proposed that 
the inter-link between the inflammatory process and development 
of DN involves complex molecular network processes. The core 
importance of inflammation is clearly evident in diabetic animals, 
where inflammation is driven by the abnormal metabolism and 
renal hypoxia [98]. Moreover, studies have reported a close relation 
between renal inflammation and the severity of metabolic and hypoxic 
disturbances in animals with DN, and demonstrated that decreasing 
systemic and renal neutrophils limit renal injury in experimental 
DN [98,99]. Surprisingly, the inflammatory-fibrotic features in 
human DN were strikingly similar to those documented in animal 
studies [98,100]. Infiltration of macrophages into the glomeruli and 
interstitium is one of the characteristic features of DN in addition to 
mesangial matrix expansion and interstitial fibrosis. Previous study has 
demonstrated that the number of macrophages in the glomeruli was 
significantly higher in moderate-stage than advanced-stage diabetic 
glomerulosclerosis [101]. It has also been shown that glomerular and 
interstitial injury is associated with macrophage infiltration in type 
1 and 2 diabetes [102,103]. Persson et al. [104] have shown that the 
inflammation and endothelial dysfunction could well act as a predictor 
for the development of DN in irbesartan treated patients with type 

2 DM [104]. The inflammatory response has been found higher in 
the diabetic patients than the non-diabetic patients [105]. From the 
above results, it is suggested that inflammation has emerged as a key 
pathophysiological mechanism. The various molecules are involved in 
the highly complex processes, i.e. the chemokines and their receptors, 
adhesion molecules, transcription factors and inflammatory cytokines 
[26].

Chemokines

Migration of immune cells into the renal cell is a feature of early DN. 
Numerous studies have suggested that the monocytes, macrophages, 
lymphocytes and neutrophils are playing a critical role for the renal 
vascular damage through the variety of mechanisms, such as production 
of ROS, cytokines and proteases which eventually leads to renal vascular 
sclerosis [103]. Furthermore, the elevated level of macrophages from 
the T-cell greatly impairs the level of proteinuria in diabetic patients 
[105]. Monocytes are attracted by the specific chemokines to the 
place of organ damage, i.e. MCP-1. It has been reported that the 
accumulation and activation of MCP-1 is a critical determinant for the 
development of DN mainly by involving in the process of recruitment 
of macrophage, albumin excretion level, and tubulointerstitial damage 
[106]. Recently, we also have found the increased MCP-1 protein 
expression in STZ-induced kidney disease [107]. In addition, CX3CL1 
is another chemokine and has been reported to play a role in the 
development of renal injury with its receptor CX3CR1. Its primary role 
is to act as chemoattractant for monocytes, T-cells and natural killer 
cells and various factors has been reported to activate this chemokine, 
such as elevated glucose level, AGEs and the activation of cytokine 
through various processes, including the activation of NF-kB and p38 
MAPK-dependent and independent pathway [108,109].

Adhesion molecules

Adhesion molecules are cell-surface protein, critically involving 
in the activation of leucocytes and macrophages to the site of 
inflammation as well as to the attachment of endothelium [110]. It 
includes intracellular adhesion molecule protein-1 (ICAM-1), vascular 
cell adhesion protein-1 (VCAM-1), endothelial cell-selective adhesion 
molecule, E-selectin and α-Actinin 4. Of these ICAM-1 and VCAM-
1 have been elaborately studied and have been reported to be up-
regulated in diabetic animal models. ICAM-1 primarily involve in 
the migration of T-cells into the kidney and critically participate in 
the development of DN with the development of renal hypertrophy, 
mesangial matrix expansion and albuminuria. It has been found that 
the various ICAM-1 knockout mice animal models have been shown to 
ameliorate the progression of DN [111]. Furthermore, the inhibition of 
ICAM-1 expression and macrophage infiltration by anti-inflammatory 
agents could ameliorate experimental DN [112,113]. Several possible 
mechanism of ICAM-1 induction in diabetic renal tissue have been 
proposed, namely, induction of ICAM-1 by inflammatory cytokines 
such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, interferon-γ, 
and activation of PKC [114], AGEs enhance the expression of cell 
adhesion molecules [115], shear stress [116], oxidative stress [117], and 
osmotic agents [118]. Recent study has demonstrated that ERK, p38 
MAPK, and JNK signaling pathways are involved in the expression of 
ICAM-1 induced by both high glucose and high osmolarity in human 
glomerular endothelial cells [119]. VCAM-1 is primarily involved in 
the adhesion of lymphocytes, monocytes, basophils and neutrophils 
and it also has been reported to be upregulated in diabetic patients 
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[120]. Previous study has demonstrated that chronic inhibition of p38 
MAPK reduced ICAM-1 and VCAM-1 expression in the quadriceps 
muscle in diabetic rats [121], which suggest that MAPKs pathway play 
a significant role in inflammatory process in DN. 

Proinflammatory cytokines

It has demonstrated that renal cells, such as glomerular, 
endothelial, mesangial and tubular epithelial cells are able to synthesize 
the proinflammatory cytokines such as IL-1, 6 and 18 and TNF-α 
during the high glucose condition [102]. Several reports have suggested 
that stimulation of IL-1 could potentially activate various renal cells 
and eventually stimulate the synthesis of VCAM-1 and ICAM-1 
[122]. Furthermore, it has been found to be a potential mediator for 
the intraglomerular abnormalities apart from its involvement in the 
vascular permeability as well as in matrix synthesis. Similarly, IL-6 has 
been reported to be associated with the increased renal hypertrophy 
as well as renal fibrosis [123]. It has been reported that IL-6 has a 
strong relation with enhancement of glomerular basement thickening 
and structural abnormalities in patients with type 2 DM [124]. The 
overexpression of IL-6 is also related to increased rates of urinary 
albumin excreation [125]. IL-18, a proinflammatory cytokines that 
belongs to the IL-1 superfamily, has been shown to play a significant 
role in the progression of DN. Study has shown that, in patient with 
DN, serum level of IL-18 as well as urinary excretion of this cytokine 
were elevated. These alterations were independent and strongly related 
to markers of glomerular and tubulointerstitial injury [126,127]. 
TNF-α has also been demonstrated to play most crucial role in renal 
hypertrophy as well as renal alternations during the early stage of 
DN [128]. Numerous studies have provided the direct evidence that 
the mRNA expression of TNF-α was elevated in diabetic patients, 
in comparison to non-diabetic patients [128,129]. High glucose-
induced increased TNF-α level is associated with a toxic result to 
the renal cells and cause disturbance to the renal filtration rate by 
causing the hemodynamic disproportion between the vasodilation and 
vasoconstriction mediators [130]. Furthermore, it has been found to 
induce the ROS in mesangial cells and has been implicated to activate 
the NADPH oxidase subunits through PKC as well as MAPK pathways 
[131]. Considering all these reports, protection of the progression of 
DN in patients with high blood glucose level seems to be challenging 
and the chemical moiety which effectively control the stimulation of 
potential cytokine, such as IL-1,6, 18 and TNF-α could play a major for 
the protection against DN.

Conclusion
Excess amounts of glucose induced the activation of PKC-MAPK in 

association with increased ROS, and inflammatory signaling cascades 
and as a result the activation of various cytokines and transcription 
factors which eventually cause increased expression of ECM genes with 
the progression to fibrosis and end stage renal disease. Understanding 
the interactions among these important signaling pathways is crucial 
for blocking the progression of DN. Identifying new therapeutic targets 
and treatments that could potentially affect the primary mechanisms 
that contribute to the pathogenesis of DN is of great clinical importance. 
Better understanding of the role of PKC-MAPK, oxidative stress, and 
inflammatory processes will assist the development of new and effective 
therapeutic targets which can be extrapolated into clinical applications 
both for preventing and for halting the progression of DN.
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