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Introduction 
In planning statistical studies, investigators cannot turn to a single 

textbook source for guidance on sample size, precision and statistical 
power. Elementary textbooks usually deal only with the estimation 
of one, or a comparison of at most two, mean(s) or proportion(s). 
Although the common structure to the formulae for these two types 
of data is not emphasized in textbooks, it has been exploited in the 
“rough and ready” multi-purpose formula given by [1,2]. However, 
Lehr emphasized (memorization of) one equation, with the multiplier 
of 16 – for a specific power (80%) and a specific two-tailed significance 
level (α =0.05) – because these two test characteristics seem to “occur 
often in biopharmaceutical research.” However, this “memorize a 
multiplier” approach does not allow the user to determine what the 
multiplier would be for other (alpha, power) configurations, or whether 
the formula refers to the total number of subjects, or just to the number 
in one of the two samples to be studied. 

The most commonly used analyses in epidemiologic and medical 
research involve ratios of odds and rates as comparative parameters. 
Some guidance on the statistical precision of such comparisons is 
found in more advanced biostatistics textbooks [3,4]; a more detailed 
treatment is found in specialized textbooks dealing with specific 
epidemiologic designs [5,6] and in dedicated articles [7,8]. The “sample 
size requirements” are often presented in tables, or obtained from 
computer software such as EpiInfo [9]. With these, the user does not 
always have full control over all the specific input values used, and 
thus may not be able to see explicitly why the numbers change the way 
they do. Guidelines for sample size for survival analyses (involving 
ratios of medians or of hazards) tend to be found in yet other separate 
publications and software [10].

Very few biostatistics textbooks deal with sample size considerations 
for a coefficient (slope) in a simple or multiple regression. For these, 
users are thus forced to consult a specialized and unfamiliar text on 
power analysis in the social sciences [11]. In this “bible,” the parameters 
of interest are correlation coefficients (simple and partial) for responses 
measured on continuous scales – rather than the more familiar 
regression slopes and binary responses that are more commonly 
used in epidemiological and clinical research. This lack of tools for 
regression analyses has been partly remedied by the recent inclusion 

in the software of calculations for studies involving linear regression – 
albeit only for responses measured on continuous scales [12,13]. 

User-friendly modules such as these are most welcome, especially if 
the algorithms they use are published and fully documented. However, 
separate calculations for each design, performed with considerable – 
and unnecessary – exactness, out of reach of the user, rather than in 
a spreadsheet or calculator, do not emphasize the common structure 
behind the seemingly different analyses. Nor do they emphasize the 
unity in modern epidemiologic and biostatistical analyses that can 
be achieved by viewing them as special cases of the generalized linear 
regression model [14]. Whereas this model is one the major statistical 
developments of the forty years, and nowadays routinely used in data-
analysis, it is seldom used in the planning of the size of an investigation. 

This note presents a single universal – even if in some instances 
slightly “inexact” – formula that (a) presents one overall sample 
size as a simple product of terms, one term per factor (b) motivates, 
tabulates and makes explicit the impact of each factor on precision and 
sample size (c) allows one to obtain a closed form expression for the 
value of any one factor in terms of the values of the remaining ones, 
(d) accommodates seemingly very different types of designs and data-
analyses within a single generalized framework. The approach could
easily be extended to other design features not discussed here.

We proceed as follows: first, we give a generic inequality in terms 
of the standard error of the estimate of the parameter of interest. We 
first focus on the corresponding overall sample size if the comparative 
parameter of interest is the slope in a multiple linear regression 
involving a response (Y) variable measured on a continuous scale. 
We then disaggregate the expression to show its distinct components, 
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Abstract
The sample size formulae given in elementary biostatistics textbooks deal only with simple situations: estimation of one, or a 

comparison of at most two, mean(s) or proportion(s). While many specialized textbooks give sample formulae/tables for analyses 
involving odds and rate ratios, few deal explicitly with statistical considerations for slopes (regression coefficients), for analyses involving 
confounding variables or with the fact that most analyses rely on some type of generalized linear model. Thus, the investigator is typically 
forced to use “black-box” computer programs or tables, or to borrow from tables in the social sciences, where the emphasis is on cor
relation coefficients. The concern in the – usually very separate – modules or standalone software programs is more with user friendly 
input and output. The emphasis on numerical exactness is particularly unfortunate, given the rough, prospective, and thus uncertain, 
nature of the exercise, and that different textbooks and software may give different sample sizes for the same design. In addition, 
some programs focus on required numbers per group, others on an overall number. We present users with a single universal (though 
sometimes approximate) formula that explicitly isolates the impacts of the various factors one from another, and gives some insight into 
the determinants for each factor. Equally important, it shows how seemingly very different types of analyses, from the elementary to the 
complex, can be accommodated within a common framework by viewing them as special cases of the generalized linear model. 
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and to show that its a special case of a generic structure. Finally, we 
add to, or modify, the expression for a broad range of analyses. 
Numerical examples are provided in some early sections to ensure that 
the proposed procedure is clear, but omitted from most of the later 
sections. 

The generic form of a sample size formula 

As is illustrated in Figure 1, for a 2-sided test with a false positive 
rate of α to have at least 100(1-β)% power against a non-zero difference, 
Δ, the study configuration must satisfy the inequality 

Zα/2SEnull + ZβSEalt < Δ, 

where Δ is the difference between the non-null (alternative) and null 
values of the parameter of interest, and SEnull and SEalt are the standard 
errors of the estimate of this parameter in the null and alternative 
scenarios, respectively. For didactic purposes we simplify the 
relationship by taking an “average” standard error, so that the relation 
can be approximated as

(Zα/2 + Zβ)SE < Δ, 

or, more usefully, in variance terms, as 

(Zα/2 + Zβ)
2 × Var[Parameter Estimate] < Δ2

 
.                                (2.1) 

Some modifications to the functions of α and β are needed if sample 
sizes are very small, e.g., when a t-(rather than a z-) distribution is more 

appropriate. Since in most situations, these modifications are minor 
and only detract from the ‘big picture,’ we will ignore them. 

Up from multiple linear regression 

Even though it may at first seem like an unusual point of departure, 
consider the situation where the parameter of interest is the slope in a 
multiple linear regression of a response (Y ) variable on an X variable 
of interest, while “adjusting for” one of more confounding variables, 
denoted collectively as C. Suppose Y, X, and C are measured on 
numerical (but not necessarily continuous) scales. As explained in 
(unfortunately few) regression textbooks [15] an approximation to the 
sampling variation associated with the slope, estimated from n values 
of the response Y, measured at the n (not necessarily distinct) values 

X = {X1,X2, ..., Xn} is given by the expression 

2
1 X with C

Var[Y | X]Var[(all possible) slope estimates] ,
Var[ ,.., ] (1 )nn X X r

≅
× × −

where Var[Y |X] is the (presumed homogeneous over X) variance of the 
(infinite number of) possible Y values at each X value, and r2

X with C
 is the 

square of the simple/multiple correlation of X with C. This expression 
illustrates how the slope is more volatile the larger the variation of the 
Y values from the true line, the greater the correlation of X with other 
influential factors, and the smaller the sample size n. It is less volatile 
the larger the spread of the n X values. 

Substituting this specific sampling variance for the slope estimate 
into the generic form in the previous section, and re-arranging terms 
so as to isolate n, we obtain 

  
2

2 2 2
1 X with C

1 1 1( ) Var[Y | X] ,
Var[ ,.., ] (1 )n

n Z Z
X X ra b> + × × × ×

− ∆          (3.1)

where Δ refers to the difference in the true effect of X on E(Y |X), i.e., the 
difference in the slope, βY |X , under the null and alternative scenarios. 

Although this expression seems to be specific to a regression 
approach, it also deals implicitly with several other contexts and 
designs. In the following sections, we will take advantage of this form 
– a product of several separate factors applied to the base-sample size 
shown in Table 1 – to emphasize the generality of our approach. 

Special case: Sample size formulae for difference of means 
and proportions 

The difference of two sample means 1 0y y−  is equivalent to the slope 
of the simple regression equation fitted to the n (= n1 + n0) datapoints 
{X1,y1}, ..., {Xn,yn}, with each of the n accompanying X’s given the 
numerical value of 1 to indicate an observation from sub-population 
1, or 0 to indicate sub-population 0. Since X is a 2-point or binary 
variable, the true slope βX is simply the difference between the mean Y 
in the sub-population where X = 1, i.e., µX = 1, and its counterpart µX =0, 
i.e., βX =(µX =1 − µX = 0)/1. 

If the two sample sizes are equal, i.e., if in the simple regression, half 
Figure 1: Basis for sample size formulae. Shown in a lighter colour, and with 
the usual orientation, is the sampling distribution of the test statistic under the 
null scenario. Shown in the darker colour, and upside down to distinguish its 
landmarks more easily, is the sampling distribution under the alternative (non-
null) scenario. Although they are in this instance, the standard errors under 
the null and alternative will not necessarily be equal. The two distributions are 
separated by an amount ∆, the difference in the (comparative) parameter of 
interest. For a 2-sided test with a false positive rate of a to have at least 100(1-
b) power against a non-zero difference ∆, the two absolute distances Za/2SEnull 
and ZbSEalt must sum to less than ∆. In this example, a= 0:05 (so that Za/2= 
1:96) and (1-b) = 0.8 (so that Zb= -0:84). 

Null

1 SE

Z[a/2] x SE[null]

α/20

∆

Non-Null

1 SE

Z[b] x SE[non-null]

β

Zα/2×SEnull

Zβ×SEalt

Table 3.1: Base sample size, (Zα/2 +Zβ)
2, as a function of significance level (α) and

power (1− β).

Significance level (α) Power (1-β)
Two-sided One-sided 0.5 0.8 0.9 0.95 0.99

0.20 (0.10) 1.7 4.6 6.6 8.6 14
0.10 (0.05) 2.8 6.6 8.6 11 16
0.05 (0.025) 3.9 7.9 11 13 19
0.01 (0.005) 6.7 12 15 18 25
0.001 (0.0005) 11 18 21 25 32

where Var[Y |X] is the (presumed homogeneous over X) variance of the (infinite

number of) possible Y values at each X value, and r2X with C is the square of the

simple/multiple correlation of X with C. This expression illustrates how the slope is

more volatile the larger the variation of the Y values from the true line, the greater

the correlation of X with other influential factors, and the smaller the sample size

n. It is less volatile the larger the spread of the n X values.

Substituting this specific sampling variance for the slope estimate into the generic

form in the previous section, and re-arranging terms so as to isolate n, we obtain

n > (Zα/2 + Zβ)
2 × Var[Y |X]× 1

Var[X1, ..., Xn]
× 1

1− r2X with C

× 1

∆2
, (3.1)

where ∆ refers to the difference in the true effect of X on E(Y |X), i.e., the difference

in the slope, βY |X , under the null and alternative scenarios.

Although this expression seems to be specific to a regression approach, it also

deals implicitly with several other contexts and designs. In the following sections,

we will take advantage of this form – a product of several separate factors applied to

the base-sample size shown in Table 1 – to emphasize the generality of our approach.

8

Table 1: Base sample size, (Zα/2 + Zβ)
2, as a function of significance level (α) and 

power (1 − β).
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of the n observations have the value X = 1 and half the value X = 0, then 
X  =0.5, and the “unit” variance of these n values of X is 

Var[X1, ..., Xn]=(−0.5)2 × (1/2) + (+0.5)2 × (1/2) = 1/4. 

Upon substituting the reciprocal, (1/(1/4)) = 4, as the third 
component into Equation (3.1), the inequality, in terms of the total 
sample size n, becomes 

ntotal > (Zα/2 + Zβ)
2 × Var[Y ’s in the same sub-population] × 4 × 

(1/Δ)2 . 

Many textbooks, such as [16], write it in the equivalent form for the 
per group sample size 

nper group > 2× (Zα/2 + Zβ)
2 × Var [Y ’s in the same sub-population]/Δ2 . 

This form confuses many investigators, since they think that the ‘2’ 
in the formula ‘already takes care of’ the 2 groups (in reality, the ‘4’ is a 
special case of a much more general formula). Armitage et al., page 140 
[3], using Var[Y |X]=0.25 and δ =0.25 calculated an n per group of 62.8. 
Our ‘separate multipliers’ approach (with the 7.9 for Table 1) suggests a 
total sample size of 7.9 × 0.25 × 4 × {1/(0.252)} = 126.4. 

The corresponding approximate formula for a comparison of 
two proportions (expressed as a risk difference, RD, or prevalence 
difference, PD) can be obtained by replacing the unit variance Var[Y 
’s in the same sub-population] by the Bernoulli unit variance π(1 − π), 
where π is the expected proportion of observations where Y = 1. The 
unit variances are given in the first row of Table 2 (the other rows will 
be discussed later). Then, with Δ the difference in risk or prevalence 
under the null and alternative scenarios, 

ntotal > (Zα/2 + Zβ)
2 × [π(1 − π)] × 4 × (1/Δ)2 . 

The reason this is an approximation goes back to our simplification, 
stated at the outset, in which we forced the standard error to be the same 
under the null and the alternative scenarios. Save for a few exceptional 
cases, the null and alternative standard errors differ when we are 
dealing with binary Y’s, since the unit variance π(1 − π) is a function of 
π itself. Under the null, the standard error of an estimate of a difference 
in proportions is a function just of π0(1 − π0), but under the alternative 

it involves a combination of both π0(1−π0) and πalt(1−πalt). In practice, 
to simplify matters, we – just as many authors do – use a common unit 
variance, evaluated at some intermediate, or “average,” value of π. For 
non-extreme values of π, and unless Zα/2 and Zβ are very different in 
magnitude, this simplification introduces only a slight approximation. 
It is however just one of the many sources of differences between the 
sample sizes obtained with different formulae or software programs.

Using π1 =0.25, π2 =0.35, α =0.05, and β =0.1, and no continuity 
correction, [3], page 142, calculated an n per group of 439. The product of 
11 from Table 1; a ‘unit variance’, calculated at π =0.3, of π(1 − π)=0.21; 
the reciprocal of the ‘unit variance’, of the group indicators (the x’s) 
of 4; and (1/δ)2 = 100, yields 11×0.21×4×100 = 924. [3] repeated their 
calculation using the continuity-correction used in the tabulations of 
Fleiss, and in Table A8 of their own textbook, and obtained a total of 
918. Not surprisingly, given that Fisher’s exact text and chi-squred tests 
yield similar results when the numbers of events are sizable, the table of 
[17] also yielded a total of 918 in this application, whereas it would not 
do so in other situations.

An insight from use of a regression approach: dealing with 
unequal sample sizes 

Although such designs are commonly used, few textbooks give 
– or if they do, adequately motivate – the corrections needed for 
comparisons involving unequal sample sizes. However, the correction 
can easily be derived and understood by examining the term 

1

1
[ ,..., ]nVar X X  

in Equation (3.1) for the variance of a slope. For, if a proportion PX=1 of 
the observations are from group X = 1, and the remainder 1 − PX=1 are 
from group X = 0, then the reciprocal of the unit variance of the group 
1 indicator values can be written as 

 
1 1 1 1 0

1 1 1 1 .
[ ,.., ] (1 )n X X X XVar X X P P P P= = = =

= = +
× −

This multiplier takes on a minimum value of 4 when PX=1 =1/2 and 

Table 3.2: Sample size multiplier (unit variance) when studying a difference or ratio
of two proportions, or the ratio of their odds. Multipliers are shown as a function
of the scale involved and of the value of response proportion (π), rounded up, and
to two significant digits. As in generalized linear models, the multiplier for the logit
and log of the proportion were derived by multiplying the unit Bernoulli variance
under the identity link function by the Jacobian associated with the change of scale.

Scale Unit Proportion (π)
variance 0.05 0.1 0.15 0.2 0.3 0.4 0.5

Proportion, π
(Risk difference) π(1− π) 0.048 0.090 0.13 0.16 0.21 0.24 0.25

Logit: log(π/(1− π))
(Odds ratio) [π(1− π)]−1 22 12 7.9 6.3 4.8 4.2 4.0

Log: log(π)
(Risk or rate ratio) (1− π)/π 19 9.0 5.7 4.0 2.4 1.5 1.0

Using π1 = 0.25, π2 = 0.35, α = 0.05, and β = 0.1, and no continuity correction,

[3], page 142, calculated an n per group of 439. The product of 11 from Table 1; a

‘unit variance’, calculated at π = 0.3, of π(1 − π) = 0.21; the reciprocal of the unit

variance of the group indicators (the x′s) of 4; and (1/δ)2 = 100, yields 11×0.21×4×

100 = 924. [3] repeated their calculation using the continuity-correction used in the

tabulations of Fleiss, and in Table A8 of their own textbook, and obtained a total

of 918. Not surprisingly, given that Fisher’s exact text and chi-squred tests yield

similar results when the numbers of events are sizable, the table of [17] also yielded

a total of 918 in this application, whereas it would not do so in other situations.
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Table 2: Sample size multiplier (unit variance) when studying a difference or ratio of two proportions, or the ratio of their odds. Multipliers are shown as a function of the 
scale involved and of the value of response proportion (π), rounded up, and to two significant digits. As in generalized linear models, the multiplier for the logit and log of 
the proportion were derived by multiplying the unit Bernoulli variance under the identity link function by the Jacobian associated with the change of scale. 

Table 3.3: Sample size multiplier, 1/Var[X1, ..., Xn] = [PX=1 × (1− PX=1)]
−1, when

X is binary, as a function of relative sizes of samples in which X = 1 and X = 0.
Multipliers rounded up, and to two significant digits.

Relative sample sizes
50:50 60:40 67:33 75:25 80:30 83:17 91:9
(1:1) (1.5:1) (2:1) (3:1) (4:1) (5:1) (10:1)

[PX=1 × (1− PX=1)]
−1 4.0 4.2 4.5 5.4 6.3 7.2 13

where k is the the ratio of the larger to the smaller sample size. Or, they might have

calculated the total sample size, as [3] do, using the formula

ntotal if unequal n′s =
(k + 1)2

4k
× ntotal if equal n′s.

In our approach, one obtains the required total directly by using the reciprocal of

the variance of the x’s as the multiplier; this approach also encourages end-users to

think of even the simple comparison of two means as just a special case of a general

regression model – one with a binary group-indicator variable as the x. [18] was

one of the first to consider the statistical efficiency for “case-control” comparisons

of both means and proportions; his 2k/(k + 1) efficiency ratio, for a study with k

controls per case, relative to 1 control per case is widely cited – it ranges from 1 at

k = 1 to an symptote of 2 at k = ∞.

Again, when the outcome is binary – i.e., when comparing proportions – un-

less one simplifies matters by taking a common standard error that is intermediate

between that under the null and alternative scenarios, it is not possible to cleanly

separate the effect of the ratio k from that of π0 and πalt. In practice, as can be

seen by studying [19], the modifications to deal with this seem hardly worth the

additional complexity, particularly in view of the tentative and approximate nature

13

Table 3: Sample size multiplier, 1/Var[X1, ..., Xn]=[PX=1 × (1 − PX=1)]
−1 , when X is binary, as a function of relative sizes of samples in which X = 1 and X = 0. Multipliers 

rounded up, and to two significant digits.
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PX=0 =1/2, and increasingly higher values the more the sub-sample sizes 
differ from each other. As can be seen in Table 3, the correction for 
this “inefficiency” is slight if the split is no worse than 60:40 (1/0.24 = 
4.2, only 5% larger than the minimum of 4) but increases rapidly as it 
becomes more extreme: e.g., 1/0.21 = 4.7, or 19%, if 70:30; but 1/0.16 
= 6.3, or 56% if 80:20; and 1/0.09 = 11, or 178%, if 90:10. Some readers 
may have seen this ‘law’ expressed in a formula for the smaller of the 
two sample sizes, 

 2 2
smaller 2

1 ( ) ( / ) ,kn Z Z
k a b σ+

= × + × ∆

where k is the the ratio of the larger to the smaller sample size. Or, they 
might have calculated the total sample size, as [3] do, using the formula 

 
2

total if unequal n's total if equal n's
( 1)

4
kn n

k
+

= × .

In our approach, one obtains the required total directly by using 
the reciprocal of the variance of the x’s as the multiplier; this approach 
also encourages end-users to think of even the simple comparison of 
two means as just a special case of a general regression model – one 
with a binary group-indicator variable as the x. Ury HK [18] was 
one of the first to consider the statistical efficiency for “case-control” 
comparisons of both means and proportions; his 2k/(k + 1) efficiency 
ratio, for a study with k controls per case, relative to 1 control per case 
is widely cited – it ranges from 1 at k = 1 to an asymptote of 2 at k = ∞. 

Again, when the outcome is binary – i.e., when comparing 
proportions – unless one simplifies matters by taking a common 
standard error that is intermediate between that under the null and 
alternative scenarios, it is not possible to cleanly separate the effect 
of the ratio k from that of π0 and πalt .In practice, as can be seen by 
studying [19], the modifications to deal with this seem hardly worth 
the additional complexity, particularly in view of the tentative and 
approximate nature of sample sizes to begin with.

Sample size for testing a simple correlation

By definition, the correlation, ρ, between two variables X and Y is 
independent of the units in which they are measured, and so the sample 

size depends only on the correlation itself. On the scale 1 1[ ] log
2 1

rT r
r

+
=

−
 

introduced by Fisher, 1Var( [ ])
3

T r
n

=
−

. Thus, equation (2.1) can be re-

arranged as n =(Zα/2 + Zβ)
2 × (1/Δ)2 , 

where

(1 ) / (1 )1 log .
2 (1 ) / (1 )

alt alt

null null

ρ ρ
ρ ρ

 + −
∆ = ×  + − 

 Even though Fisher’s transformation is not found in the generalized 
linear model packages, its ‘canonical’ form does map r into the full −∞, 
∞ scale. Table 4 gives the (1/Δ)2

 
multipliers based on this transforma

tion. Use of this transform should discourage end-users from using 
the null variance in confidence interval and sample size calculations 
involving r. 

The sample size cost of having to adjust for confounding 

A multiple regression, or an analysis of covariance, is often used 
to remove the bias that would be generated by omitting an important 
covariate (C) that is correlated with the determinant (X) of interest. In 
the simplest case, where X is binary, the fitted regression coefficient bX|C 

in the multiple linear regression is algebraicly equivalent to subtracting 
a correction factor from the fitted ‘crude’ regression coefficient 

1 0X X Xb y y= == − , i.e., [20] 

( ) ( )/ 1 0 / 1 0 .X C X X X C X Xb y y b C C= = = == − − × −

The adjustment in sample size to achieve the same power as when 
there is no C is also in the form of a multiplier, ( )2

 1 / 1 ,X with Cr−  which some 
will recognize from courses in multiple regression as the variance 
inflation factor or VIF. The multipliers are given in Table 5. 

We could equally call them the “sample size inflation factors” 
since, statistically speaking, we counteract variance by sample size, i.e. 
they are inverses of each other. To help understand how the control 
of confounding comes at a sample size cost, and to make a link with 
sample size formulae for simple linear regression, it may help to 
take a simplified example, and to borrow again from the regression 
framework underlying, and unifying, all of the formulae presented here. 
Consider a non-experimental study (cross-sectional) that investigates, 
in a multiple linear regression, how Y , the amount of hearing loss, is 
influenced by X, the number of years employed in a noisy workplace, 
while having to take account of C, the worker’s age. Conceptually, using 
C in the multiple regression is similar to combining the slopes from the 
C-specific simple linear regressions of Y on X. Unless the sampling of 
subjects is designed to ensure the same (full) range of X’s in each age-
band, the naturally high correlation between X and C will produce a 
range of X at each value of C which is narrower than the full variance 
Var[X]. In fact, the C-specific variance of X is only ( )2

 Var[ ] 1 X with CX r× − . 
Also, in a simple linear regression, the variance of the slope is governed 
by the reciprocal of the variance of the X’s at which the Y observations 
are made. Thus the decreased precision (or the increased sample size 
required for the same precision) for the regression coefficient for X in 
the multiple regression can be seen as a case of a decreased effective 
range of X in a series of C-specific simple regressions of Y on X. 

Table 3.4: Sample size multipliers, (1/∆)2, for testing a correlation; rounded up, to
two significant digits.

ρalt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρnull
0 99 24 10 5.6 3.3 2.1 1.3 0.8 0.5
0.1 95 23 9.6 5 2.8 1.7 1 0.5
0.2 88 20 8.3 4.2 2.3 1.2 0.6
0.3 77 17 6.8 3.2 1.6 0.7
0.4 63 14 5.1 2.2 0.9
0.5 48 9.9 3.3 1.2
0.6 33 6.1 1.6
0.7 19 2.7
0.8 7.2

entries are 1/(T [ρalt]− T [ρnull])
2

where T [ρ] = (1/2) log[(1 + ρ)/(1− ρ)].

of sample sizes to begin with.

3.3 Sample size for testing a simple correlation

By definition, the correlation, ρ, between two variables X and Y is independent of

the units in which they are measured, and so the sample size depends only on the cor-

relation itself. On the scale T [r] = (1/2) log 1+r
1−r

, introduced by Fisher, Var(T [r]) =

1/(n − 3). Thus, equation (2.1) can be re-arranged as n = (Zα/2 + Zβ)
2 × (1/∆)2,

where ∆ = 1
2
× log

[
(1+ρalt)/(1−ρalt)

(1+ρnull)/(1−ρnull)

]
. Even though Fisher’s transformation is not

found in the generalized linear model packages, its ’canonical’ form does map r into

the full −∞,∞ scale. Table 4 gives the (1/∆)2 multipliers based on this transforma-

tion. Use of this transform should discourage end-users from using the null variance

in confidence interval and sample size calculations involving r.

14

Table 4: Sample size multipliers, (1/Δ)2, for testing a correlation; rounded up, to 
two significant digits.

Table 3.5: Sample size multiplier to cover the cost of adjusting for one of more
confounding variables. The multiplier, [1− r2X with C ]

−1, is given as a function of the
(multiple) correlation, rX with C , between X and the set of confounding variables C.
It is rounded up, and given to two significant digits.

(Multiple) Correlation, rX with C ,
between X and covariate(s) C

0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[1− r2X with C ]
−1 1.0 1.1 1.2 1.4 1.6 2.0 2.8 5.3

X and C will produce a range of X at each value of C which is narrower than the full

variance Var[X]. In fact, the C-specific variance of X is only Var[X]×(1−r2X with C).

Also, in a simple linear regression, the variance of the slope is governed by the

reciprocal of the variance of the X’s at which the Y observations are made. Thus

the decreased precision (or the increased sample size required for the same precision)

for the regression coefficient for X in the multiple regression can be seen as a case of

a decreased effective range of X in a series of C-specific simple regressions of Y on

X.

Technically speaking, when covariates – whether or not they are confounders –

are included in a multiple regression, the sample size formulae involves the smaller

Var[Y |X,C], rather than Var[Y |X]. Given the scanty reporting of X-specific or

X-and-C-specific summary statistics in many research reports, it is difficult to find

either of these in the literature. Thus, in practice, when planning a new study, one

often must make do with estimates of the – even larger – unconditional Var[Y ]. In

randomized trials, where X and C are relatively uncorrelated, one may still wish

to reduce the within-group variation Var[Y |X] by using C, in addition to X, in a

two-way analysis of variance, or – if C is numerical – in an regression-based analysis

of covariance. If the analysis will involve the identity link and Gaussian variation,

16

Table 5: Sample size multiplier to cover the cost of adjusting for one or more 
confounding variables.The multiplier, 2 -1

 with [1- r ]X C  is given as a function of the 
(multiple) correlation, rX with C , between X and the set of confounding variables C. It 
is rounded up, and given to two significant digits.
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 Technically speaking, when covariates – whether or not they are 
confounders – are included in a multiple regression, the sample size 
formulae involves the smaller Var[Y |X,C], rather than Var[Y |X]. 
Given the scanty reporting of X-specific or X-and-C-specific summary 
statistics in many research reports, it is difficult to find either of these 
in the literature. Thus, in practice, when planning a new study, one 
often must make do with estimates of the – even larger – unconditional 
Var[Y ]. In randomized trials, where X and C are relatively uncorrelated, 
one may still wish to reduce the within-group variation Var[Y |X] by 
using C, in addition to X, in a two-way analysis of variance, or – if 
C is numerical – in an regression-based analysis of covariance. If the 
analysis will involve the identity link and Gaussian variation, then 
using Var[Y ] or Var[Y |X] rather than Var[Y |X, C] to plan sample sizes 
will likely underestimate the actual power [21]. In non-experimental 
studies, if there is considerable confounding, i.e., if 2

withX Cr  is much 
greater  than zero, the gains in precision from including C (and X!) in 
the model may be partly offset by the variance inflation factor. The net 
result can often only be guessed at, unless one can provide estimates of 
the various components from analyses of one’s own earlier data from 
similar situations. 

The sample size cost of using mis-measured responses (Y’s) 

Fleiss [22] emphasizes the cost of unreliable responses by multiplying 
the sample sizes needed in the case of error-free (Y) measures by the 
reciprocal of the reliability coefficient RY. This correction stems from 
the definition of the reliability coefficient as the ratio of the variance of 
the error-free Y to the variance of the error-containing Y*= Y + e, i.e., 

 * *
[ ] [ ] .
[ *] [ ] [ ]Y Y

Var Y Var YR ICC
Var Y Var Y Var e

= = =
+

Thus, since the power of the study will be influenced by the 

variation in the Y*’s rather than in the Y ’s, the ntotal calculated based on 

an error-free (Y) needs to be inflated by a factor of 
*

1

YR
. Thus, if the 

reliability is expected to be 0.8, 0.6, 0.4, or 0.2, the planned sample size 
needs to be inflated by a factor of 1.25, 1.67, 2.5 and 5.00 respectively.

The sample size cost of using mis-measured X’s 

Imprecision in the measured X’s has a more insidious effect of 
attenuating the fitted regression coefficients [23]. Suppose, for example, 
that the true relation, involving error-free X’s, is 

E[Y |X + 1] − E[Y |X]= βY |X . 

The use of error-containing, X*’s instead of error-free X’s, will, on 
average, lead to an observed slope that is closer to the null, i.e, 

E[Y |X*
 
+ 1] − E[Y |X*]= βY |X  × ICCX* , 

where ICCX* is the reliability of the X*
 
measurements. In this situation, 

the required sample size from equation (1) – or the detectable effect – 
should be multiplied by the sample-size-inflation-factor, 1/ICCX* . 

When the parameter of interest is the correlation coefficient, ρY,X , 
the attenuation involves the reliability of both the Y ’s and the X’s: 

* *[ *, *] [ , ] Y XY X Y X ICC ICCρ ρ= × × .

Thus, the required sample size should be multiplied by the two 
sample-size-inflation factors

*

1

YICC
and 

*

1

XICC

Prevalence-, risk-and odds-ratios 

The log of an odds ratio (OR) is the difference between the logs 
of the two compared odds, and can be represented as the slope of 
the regression of the logits on the values (0/1 or continuous) of the 
X (exposure) variable. The use of logits transforms the traditional 
response parameter scale of 0 <π = P (Y = 1) < 1 to the larger scale −∞ < 
log[π/(1 − π)] < ∞. This enlargement of the response scale also enlarges 
“unit” variances associated with Y . Thus, as is highlighted in the later 
rows of Table 2, the unit (Bernoulli) variance of π(1−π) in the general 
sample size expression must be replaced by the unit variance in the 
logit(π) scale, namely 1/[π(1 − π)], to give

2
total 2 2

1

1 1 1( ) .
(1 ) [ ,.., ]n

n Z Z
Var X Xa b π π

> + × × ×
− ∆

 

and – because of the change of scale – the Δ in Table 3 refers to the 
difference in the true log odds (i.e., the log of the odds ratio) under the 
null and alternative situations. There is a large literature on sample size 
calculations for logistic regression with continuous covariates: see [24] 
for a recent example and for links to earlier work. If, instead, the focus 
is on a simple ratio of two proportions, inference is usually carried out 
in the log scale. Thus, Table 5 also shows the unit variance in this scale, 
and the Δ in Table 6 refers to the difference in the true log prevalence 
or risk ratio under the null and alternative situations. 

Outcome-based sampling: Not all studies have an ‘X → Y ’ design. 
When either Y = 1 or Y = 0 is uncommon, it may be more efficient 
to use ‘outcome-based’ sampling, by merely assembling sufficient 
numbers of instances of each of Y = 1 and Y = 0 and then measuring 
X in each instance. In epidemiology, this study design is often called a 
case-control study [6, 5] whereas in economics and marketing, it might 
be called choice-based sampling [25]. 

In the planning of – but not the analysis of the data from – such 
studies, it helps to reverse the usual roles of X (“exposure”) and Y 
(“outcome”), so that Y′

 
= X and X′

 
= Y . Although, conceptually, we wish 

to compare the event-rate in the exposed with that the unexposed, most 
authors calculate the sample size for case-control studies by ‘comparing 
the cases with the controls’ with respect to the proportion exposed. 
Thus, in their example 4.16, [3] use the expected 1:4 distribution of 
exposed:nonexposed in the general population, and the postulated rate 
ratio of 2, to calculate that the distribution in the cases would be 1:2. 
Thus, they converted the calculation of the required number of cases, 
and an equal number of controls (a 1:1 ratio), into a comparison of 
two exposure proportions, with values 0.20 and 0.20 under the null, 
and 0.20 and 0.33 under the alternative. With α =0.05, and β =0.2, they 
calculated that the required numbers are 187:187 (374 in all). 

Although our approach anticipates that in the actual data-analysis, 

Table 3.6: Sample size multiplier, ∆−2, when studying a difference or ratio of two
proportions, or the ratio of their odds, or the ratio of two event-rates. Multiplier
is given as a function of the differerence, ∆, in the scale in question, between the
alternative and null values of the comparative parameter.

Risk difference (∆)
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

∆−2 : 400 100 45 25 16 11 8.2 6.3 4.9

Odds, risk, or event-rate ratio (e∆)
1.1 1.25 1.5 1.75 2.0 2.5 3.0 4.0 5.0

∆−2 : 110 20 6.1 3.2 2.1 1.2 0.83 0.52 0.39

helps to reverse the usual roles of X (“exposure”) and Y (“outcome”), so that

Y ′ = X and X ′ = Y . Although, conceptually, we wish to compare the event-rate

in the exposed with that the unexposed, most authors calculate the sample size for

case-control studies by ‘comparing the cases with the controls’ with respect to the

proportion exposed. Thus, in their example 4.16, [3] use the expected 1:4 distribution

of exposed:nonexposed in the general population, and the postulated rate ratio of 2,

to calculate that the distribution in the cases would be 1:2. Thus, they converted

the calculation of the required number of cases, and an equal number of controls (a

1:1 ratio), into a comparison of two exposure proportions, with values 0.20 and 0.20

under the null, and 0.20 and 0.33 under the alternative. With α = 0.05, and β = 0.2,

they calculated that the required numbers are 187:187 (374 in all).

Although our approach anticipates that in the actual data-analysis, statistical

tests and interval estimates will be based on differences in logits, we too take advan-

tage of the fact that planning for a certain precision using a case:control (Y=1 : Y=0)

ratio in an outcome-based-sampling study is analogous to planning the distribution

of X ′ in an ‘X ′ → Y ′’ design. Thus, in the just-cited example, a ratio of 1 control

20

Table 6: Sample size multiplier, Δ−2, when studying a difference or ratio of two 
proportions, or the ratio of their odds, or the ratio of two event-rates. Multiplier is 
given as a function of the differerence, Δ, in the scale in question, between the 
alternative and null values of the comparative parameter.
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statistical tests and interval estimates will be based on differences in 
logits, we too take advantage of the fact that planning for a certain 
precision using a case:control (Y =1 : Y =0) ratio in an outcome-based-
sampling study is analogous to planning the distribution of X

 
in an ‘X′

 

→ Y′’ design. Thus, in the just-cited example, a ratio of 1 control (Y = 
0) per case (Y = 1) would be represented as PX’ =1 =1/2 and PX’ =0 =1/2, 
yielding an X′-associated multiplier of 1/(1/2) + 1/(1/2) = 4. Likewise, 
an (average) exposure (X) prevalence of 25% or π =1/4, say, would be 
represented as a Y’-associated multiplier of

 11 [ (1 )] 1 (1 4) 1 (3 4) 5 .
3

π π− = + =  

(Of note is that, expanded, the product of these two multipliers, is 
1/(1/8) + 1/(1/8) + 1/(3/8) + 1/(3/8): this sum, divided through by 
the overall sample size n, has the same form as Woolf’s formula for 
the variance of a log odds ratio. The fact that the product of the two 
multipliers is the same no matter which item (exposure or case/control 
status) is assigned the role of X and which the role of Y reflects the 
invariance of the odds ratio with respect to the sampling strategy.) 
Thus, the total number of subjects is the product of 7.9 from Table 1, 
the 4 and 15

3
 reflecting the outcome and exposure distributions, and 

the 2.1, representing the `signal’, from the last row of Table 6. It comes 
to 354. If unsure whether to calculate the unit variance for Y′

 
at an 

‘average’ exposure of 0.20 say, or at 0.265 = (0.2 + 0.33)/2, or at 0.33 
it is safer to take the most conservative one: an average of exposure 
prevalence of say 20% yields a unit variance (multiplier) for Y′

 
of 1/

(1/5) + 1/(4/5) = 16
4

 rather than 15
3

, giving a result of 414, slight 

larger than the 374 derived by [3]. 

Although our approach may seem somewhat complex for what 
appears to be a simple comparison of two proportions, the fact is that 
odds ratios from case-control studies are seldom derived from simple 
2 × 2 tables taught in introductory epidemiology courses; nowadays, 
they are typically derived from multiple logistic regression. And while 
the above logit-based sample-size calculation does not include any 
adjustment variables, it does come closer to actual analysis practice. A 
second advantage of our general approach is that its covers all possible 
design configurations, not just those are typically tabulated. Because 
controls are more readily available, and increase statistical power, 
investigators typically assemble more controls than cases. Yet, tables 
in textbooks limit themselves to control:case ratios of 1 or 2 or 4 (Table 
A9 of [3] only covers the 1:1 design, α =0.05 and β =0.1/0.2.) In our 
approach, ratios of k = 3 – or 5, or 20 – controls (Y = 0) per case (Y = 1) 
are easily handed by using a single X′-associated multiplier of 1/[1/(k + 
1)] + 1/[k/(k + 1)] = (k + 1)2/k.

The effect of confounding variables on sample size: The above 
expressions are for crude comparisons, and thus omit the VIF. An 
adjusted odds ratio can be obtained by a Mantel-Haenszel summary 
measure or by exponentiating the Woolf-weighted average of the 
stratum-specific log-odds ratios or by including the confounding 
variable(s) in a logistic regression regression model. The way in which 
the variance of the parameter estimate in a logistic regression model 
depends on the distribution of the Y, X, and C variables is quite compli
cated, and – aside from the special situation where the prevalence of 
Y = 1 instances is low [26] – not easily simplified to a usable closed 
form expression. Unlike the case of an identity link and Gaussian 
variation, it is even difficult to predict whether adding C to a logistic 
regression of Y on X will increase or decrease the variance of the 

estimated regression coefficient associated with X [27]. However, this 
does not mean that if C is uncorrelated with X (as it would be expected 
to be if, in an RCT, treatment, X, was allocated independently of C), 
one should omit it from the logistic regression: omitting it tends to 
produce an underestimate of the parameter of interest [28]. Given these 
complexities, the approach of [29], who (effectively) suggest using the 
same VIF used in Equation (3.1) above, along with the crude variance 
in the logit(π) scale, seems to be a sensible one, unless the effects of both 
X and C are very strong.

Risk/Prevalence ratios: The log of a relative risk (RR), or of 
the relative prevalence, is the difference between the logs of the two 
compared proportions. The entries in the last row of Table 2 reflect this 
change in scale, whereby the Bernoulli unit variance is replaced by the 
unit variance in the log(π) scale, namely (1 − π)/π, to give 

2
total 2 2

1

1 1 1( ) .
[ ,.., ]n

n Z Z
Var X Xa b

π
π
−

> + × × ×
∆

Of course, Δ now refers to the differerence between the non-null 
and null values of log(RR). 

Rate ratios 

For statistical purposes, one can treat a Poisson-based analysis 
of rate-and hazard ratios by re-expressing the overall person time 
as a large number (total: n) of person-moments, each with a small 
probability (π), indexed by X, of producing an event. The resulting unit 
variance in the log(π) scale then simplifies to 1/π, to give 

2
total person-moments 2 2

1

1 1 1( ) .
Var[ ,.., ]n

n Z Z
X Xa b π

> + × × ×
∆

Multiplying through by π allows the inequality to be written in 
terms of overall number (nπ) of events

2
total events 2 2

1

1 1( ) .
Var[ ,.., ]n

n Z Z
X Xa b> + × ×

∆
where Δ is the difference between the null and alternative values of 
the log of the rate ratio. This is similar to the formulae given by [6,7]. 
However, they, as well as [30], give expressions for the numbers of 
events or person time in one group. Again, in order to simplify the 
components in the expression, we treat π as constant (and the associated 
variance) over the various (X,C) configurations but the simplification 
still gives a reasonable approximation. 

As an example, consider the total number of events required for a 
‘rate’ contrast within the same cohort study, a topic addressed in some 
detail in [6]. In the (unusual) situation of equal sized sub-cohorts, their 
quite simple formula, involving just Zα, Zβ and the Rate Ratio, RR, 
yields, in the case of RR = 0.5, a total of 69 events, whereas ours yields 
65. For a smaller signal, RR = 0.9, the corresponding numbers are 633 
and 630. In practice, the contrasted amounts of experience are likely to 
be unequal, typically with less (say 0.3) in the index category and more 
(0.7) in the reference category. In this situation, the more unwieldy 
formula from [6] yields 98 whereas ours (with Var[X]= 0.21) yields 78. 
For a smaller signal, RR = 0.9, the corresponding numbers are 801 and 
750. At these higher numbers of events, differences in the links used 
have less impact on the Gaussian approximation to the distribution of 
the test statistic: we use the log link and thus the log(Poisson count) 
and the log(RR) scales, whereas [6] use the fact that, conditional on 
the total number of events, the split into ‘index’ vs ‘reference’ category 
events is binomial, with π = 0.3RR/(0.3RR +0.7). 
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Correlated responses 

In some studies, two or more observations come from each of 
several clusters, for example from paired organs or limbs or anatomical 
regions in the same individual, or from twin pairs, or members of the 
same family, school, professional practice, etc. [31-33]. Even after 
adjustment – through say the use of fixed-effects terms in a regression 
analysis – for characteristics of the individual (e.g., sex, age) and the 
cluster (e.g., family income, age, sex, and training of the practice 
professional), the residuals of the responses of individuals in the same 
cluster may still tend to be of the same sign. This correlation exists 
because not all of the shared factors that influence responses in the 
same cluster are measured, or measurable, or even known. 

We use a simple ‘one-sample’ (intercept-only, constant X) example 
to help explain the impact of the correlation. Suppose that, in order to 
estimate the average level of a variable Y in a population of children, 
observations are made on a total of n = 100 children, 2 from each of 
50 households. Depending on how closely correlated the levels from 
children in the same household, the effective sample size is somewhere 
between 50 – if levels from the 2 children in the same household are 
identical – and 100 – if they are no more alike than levels from 2 children 
in different households. The population mean is estimated from all 
n observations by giving each one a weight between 0.5 (if perfect 
correlation) and 1 (no correlation), and using them to take a weighted 
average of the n response values, Y. In such situations, the similarity is 
usually measured by the intra-class correlation (ICCY ) and the weight 
associated with the observation on each pair-member becomes 1/(1 + 
ICCY ). More generally, if the number of sampled children varies from 
household to household, the weights become 1 each for the statistically 
independent singletons, 1/(1+ICCY ) for children in 2-children clusters, 
1/(1 + 2 × ICCY ) for those from 3-children clusters, and so on [34]. 
Thus, if the average cluster size is k, and one wishes to achieve the same 
statistical precision as one would have with n independent observations, 
the overall size of the sample needs to be approximately (1 + (k − 1) × 
ICCY ) times larger than n. One can incorporate this requirement into 
sample size formulae (1) by multiplying the unit variance Var[Y |X] for 
independent units by this variance inflation factor or effect size of (1 + 
(k − 1) × ICCY ), i.e.,

‘unit variance’ if Y1,Y2, ..., Yk from same cluster = Var[Y |X]×(1+(k −1) 
× ICCY ). 

The same variance inflation factor applies in a two-sample 
comparison of levels in n0 children from several families in group 
X = 0 with n1 children, from several other families, in group X = 1. 
More generally, it applies in any multiple regression situation where 
observations from the same cluster are not split up across the different 
levels of X, the contrast-variable of interest. 

The opposite of variance inflation occurs when 
observations from the same cluster are split up across the different 
levels of X. Consider as an example a comparison of Y levels across 
two conditions (X = 0 and X = 1), but with both conditions studied 
in the same cluster, allowing for a within-cluster comparison. The 
cluster might be an individual (as in a crossover design) or a twin (or 
otherwise-matched) pair. In such instances, the variance associated 
with a difference Y1 − Y0 measured within same or matched 
individual is reduced by the within-pair correlation, so that the 
‘unit variance’ of within-cluster contrast = usual unit variance × (1 − r) ,

where r is the correlation of the (Y0,Y1) pairs. The multiplier in Equation 
(3.1) associated with the 50:50 distribution of X remains as 4 and the 
sample size continues to be in terms of the overall or total number 
of observations (Y values); however, with self -pairing, the number of 
subjects is half this number. The contrast between variance inflation 
and variance reduction is nicely illustrated by [35].

Given that correlation can lead to a loss of information, it may 
seem surprising that repeated measures designs are used so commonly. 
However, when interest centres on a change in response under 
different conditions or over time, the longitudinal correlation between 
repeated observations means that within-person changes can be highly 
informative because they minimize the noise arising from between-
person variability. Thus, if one wished to test a new drug purporting 
to increase height in middle-aged adults, the fact that height is 
essentially constant in this age group means that the change in height 
within subjects (before drug versus after) will provide a powerful test 
of efficacy. In such circumstances, ignoring the correlation structure 
can waste important information and can make standard errors too 
large, as when an unpaired t-test is used on paired data with a positive 
intraclass correlation. 

Special cases 

Equation (1) can easily be modified easily to accommodate other 
situations. 

Interval estimation rather than hypothesis testing: In this 
context, the (Zα/2 + Zβ)

2 
term in Equation (3.1) becomes simply 2

2Za
and Δ refers to the acceptable margin of error in estimating the 
parameter of interest, i.e., half the width of the confidence interval.

One sample tests/confidence intervals: Since there is no variation 
in, and thus no comparison across levels of, X, the multiplier involving 
the variance of X in Equation (3.1) simply drops out.

Ordinal covariates, X, and tests of trend: Although the emphasis 
here has been on an all-or-none covariates X, the formulae can also be 
used with an ordinal or interval X. One specifies, or anticipates, via its 
variance the approximate distribution of the X values.

Discussion 
Many clinical and epidemiological studies involve sample size 

considerations that are much more complex that those covered in 
mainstream textbooks, so much so that some users resort to specialized 
commercial (and often expensive!) sample size software to do the 
calculations. However, the approach described here shows that there 
is considerably more unity, and thus a greater transparency, to these 
formulae than can be seen with the prevailing tools. In particular, by 
adopting a multiple regression approach, different designs involving 
unequal sample sizes, differences in means, regression slopes, 
differences of (and linear trends in) proportions, and allowance for 
the cost of controlling for confounding, can all be accommodated 
within the same framework. Generalized linear regressions with the 
logit or log link, and Binomial or Poisson Variation are already widely 
used models in data-analysis. By formulating contrasts within such 
a generalized linear regression framework, [36], and recognizing the 
change of scale – and accompanying change in variance – that these 
links induce, the sample size formulae can easily be extended to deal 
with effect measures expressed as ratios. 

To be able to show the (entire) sample size formula as a product 
of entirely separate elements, one simplifying approximation was 
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required. Even when the variance is itself a function of the mean (as 
in Binomial and Poisson variation), the approach described here does 
not evaluate this variance separately under the null and under the 
alternative scenarios. Instead, these variances are evaluated at a common 
intermediate value. Quite apart from the mainly didactic purpose of 
this presentation, this simplification, and the other approximations 
involved when dealing with models other than the identity-Gaussian 
variation model, can be justified on several grounds. Some of these 
are purely statistical; some have to do with the large gap between 
the before-and after-the-data-collection realities and the amount of 
realism that can be incorporated in the formulae. Even from a purely 
technical statistical viewpoint, despite appearances to the contrary, all 
of the seemingly exact formulae are themselves approximations at best. 
For example, in practice, even when Y is recorded on an interval scale 
(as for example with birthweights), it is biologically implausible than 
an effective intervention will simply shift the null distribution, but not 
affect its spread. With binary Y ’s, or counts, the groups studied may 
contain hidden mixtures that create extra-binomial or extra-Poisson 
variation than may be difficult to quantify at the time of planning. 
Moreover, it is quite difficult to anticipate what the magnitudes of the 
response means (or proportions), their variances – crude and net – and 
the multiple correlation coefficient of X with C, will actually be. Nor is 
it realistic to assume that one can pre-specify exactly the set of variables 
that will go to make up C, or how these variables will be represented in 
the final models, or how much one should adjust for the way degrees of 
freedom are ‘spent’ in arriving at final models [37]. 

Another reason not to overemphasize exactness in sample size 
formulae has to do with the fact that Δ is not what it seems. Despite it 
being largely a matter of judgment as to what difference would make a 
difference, and the costs associated with this benefit, the value used is 
often based on small empirical pilot studies rather than on the judgment 
of experts. Moreover, the before-the-study value of Δ, and the focus on 
detecting this difference, are – curiously – seldom considered in the 
interpretation of the results. 

Some readers may have expected us to provide extensive 
comparisons of the formulae here with those in textbooks and software. 
The main reason we did not do so is that there is no one perfectly 
correct formula for any given problem. For example we regularly 
notice that investigators will – at the planning stage – use a sample size 
formula based on a specific method of data-analysis (e.g. a comparison 
of proportions based on the arcsine transform) and then – at the actual 
analysis stage – use quite a different method (e.g. a chi-square or an 
exact test, or focus on one coefficient in a multiple logistic regression). 

The increasing use of meta-analyses correctly emphasizes the 
accumulation of evidence, over the single-study “yes/no” statistical 
decision framework that underlies most sample size formulae. In 
this spirit, when planning the size of an investigation, perhaps it is 
best to focus less on the α, β, and Δ, and more on other factors in the 
formulae. These are the factors that determine how much precision the 
investigation will ‘buy’ with the outlay being considered/requested, and 
how much – and with what efficiency – the investigation will contribute 
to the ultimate meta-analyses. One of our colleagues likens the issue 
to how much to give when the collection plate is passed around in a 
place of religious worship: people give according to their means: it is 
the aggregate of the individual contributions that ultimately matters. 
The scientific aggregation ultimately takes place at the time of a meta-
analysis. Thus, just as there is no right individual amount to put in the 
collection plate, there is no right sample-size: more is usually better, 

unless resource constraints force sponsors to fund only the subset 
of studies that collectively yield the most precise overall parameter 
estimate for the total budget available. 

Postscript 

 At the beginning of section 3, we noted that textbooks miss an 
important opportunity to re-write the term 2( )iX XΣ − in equation 
(1) in the more instructive form n × Var [X1, ..., Xn], and to show the 
familiar n  explicitly in its usual location in the denominator of the 
standard error. We appreciate that some authors prefer to define all 
variances in terms of a divisor of (n − 1) . However, regression analyses 
treat the n X values as “fixed” – they may even have been designated by 
the investigator – it is legitimate to think of 2( )iX XΣ −

 
as n, rather 

than as (n − 1) times the variance of these particular n values of X. In 
any case, n is typically large enough, and as most power calculations 
are projections based on the estimates of the magnitude of Var[Y |X] 
– and if the X values are not designated ahead of time, on estimates of 

2( )iX XΣ − . Thus, the appropriateness of “approximating (n -1) by n 
is moot. As statistician Karl Pearson wrote to Guinness experimentalist 
Willam Gosset in 1912, “only naughty brewers take n so small that the 
difference is not of the order of the probable error!”.
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