alexa Abstract | A Fast Analytic Simulation of Stochastic Mutation and its Application to Modeling Cancer Drug Resistance
ISSN: 2168-9679

Journal of Applied & Computational Mathematics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Random “Darwinian” mutation is a primary mechanism by which cancer and pathogens develop resistance to drugs, and this process has been mathematically modeled extensively. Analytic models employ simple equations and allow for very fast computation, but do not accurately predict mutation times or survival probabilities of resistant populations. Stochastic models provide a distribution of probable outcomes but involve more complex mathematics. We present here an analytic method that simulates stochastic mutation with much better accuracy than that of the standard analytic equations. This method is based on an observation that the median stochastic solution emerges at a time close to when the cumulative probability of a first mutant birth approaches unity, which can be calculated analytically. We compare our model to the median stochastic resistant population versus time for varying rates of cell division, natural death, mutation, and drug kill. Generally we find at least an order-of-magnitude reduction in the error of the birth time and the RMS normalized error relative to the standard analytic solution. This method’s speed, accuracy, and simple results make it well-suited as a tool in software and mutation models to survey the resistant heterogeneity of cancers under various treatment plans or to guide a probabilistic analysis with a stochastic model. Such models could advance progress toward a better understanding of the dynamics of resistant subpopulations, better personalized treatment plans, and longer patient survival given the complex and ever-changing sets of drugs, doses, schedules, and cancer genomics of each patient in the clinical setting.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Colborn JA

Keywords

Cancer, Mutation, Cancer drug resistance, In-silico cancer modeling, Smooth Complexities, Adomian Decomposition Method, Applied Mathematics, Number Theory, Sensitivity Analysis, Convection Diffusion Equations, Numerical Solutions, Nonlinear Differential Equations, Differential Transform Method , Balance Law, Quasilinear Hyperbolic Systems, Mixed Initial-boundary Value, Fuzzy Boundary Value, Semi Analytical-Solution, Integrated Analysis, Fuzzy Environments, Molecular Modelling, Fuzzy Quasi-Metric Space, Three Dimensional Steady State, Computational Model

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords