alexa Abstract | A Fast Distributed Mining of Association Rules In Horizontally Distributed Database
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Data mining can extract important knowledge from large data collections, but sometimes these collections are split among various parties. This paper addresses a fast distributed mining of association rules over horizontally distributed data. While preparing a data set for analysis is generally the most time consuming task in a data mining,requiring numerous complex SQL queries, joining tables and aggregating columns. Existing SQL aggregations have limitations to prepare data sets because they return one column per aggregated group. In general, a significant manual effort is required to build data sets, where a horizontal layout is required. The proposed is simple, yet powerful, methods to generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of one number per row. This new class of functions is called horizontal aggregations. Horizontal aggregations build data sets with a horizontal de normalized layout (e.g. point-dimension, observation-variable, instance-feature), which is the standard layout required by most data mining algorithms. The proposed method used three categories to evaluate horizontal aggregations: CASE: Exploiting the programming CASE construct; SPJ: Based on standard relational algebra operators (SPJ queries); PIVOT: Using the PIVOT operator, which is offered by some DBMSs. Experiments with large tables compare the proposed query evaluation methods. A CASE method has similar speed to the PIVOT operator and it is much faster than the SPJ method. In general, the CASE and PIVOT methods exhibit linear scalability, whereas the SPJ method does not.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Rajkumar.S , V.Elavarasi

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords