alexa Abstract | A Finite Volume method for 3-D unsteady Fluid flow Analysis using Bi-Conjugate Gradient Stabilized solver
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The fluid flow problems play a significant role in predicting and understanding the flow pattern in different flow processes. The three dimensional flow analysis is made using an unstructured finite volume technique. The space discretization is carried out using arbitrarily oriented tetrahedral elements. The cell-centered scheme, which is popular in Fluid Dynamics, is directly adopted here. A Least square based methodology is used for the derivative evaluation using cell-centre values avoiding the tedious reconstruction and Bi-Conjugate Gradient Stabilized (Bi-CGStab) method is used for the solution of the resulting system of linear equations. Combination of unstructured finite volume method along with the Bi-CGStab solver is first proved by applying it to the solution of an unsteady 3D convection diffusion equation. A Taylor based upwind scheme similar to that of Taylor Galerkin approach is used. This gives second order accuracy and results in a natural upwind term. After the Taylor series application the results are cast into the general divergence form so that the finite volume method can be applied directly. The stability of the solution is tried for various peclet numbers and found to be robust. The methodology is then extended to 3D Navier Stokes equations and the code is validated for the lid-driven cavity flow. The implicit solutions obtained for the Navier Stokes equation using Bi-CGStab method is found to save considerable amount of computation time

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Shihabudheen Kunnath , Ramarajan A

Keywords

Unstructured, Finite Volume Method, Unsteady, Fluid flow, Bi-CGStab method., Aerospace Engineering,Applied Electronics,Chromatography Techniques.

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords