alexa Abstract | A Bayesian Joint Analysis and Imputation Model for Longitudinal Data: An Application in Type 2 Diabetes Drug Effect Comparison

International Journal of Collaborative Research on Internal Medicine & Public Health
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Background: The level of serum creatinine is important affected parameter in presence of type 2 diabetes. The choice of type 2 diabetes drug therapy is crucial to control the serum creatinine level. The drug treatment effect can only be captured through repeated observations in the patients.

Objective: The aim of this work is to compare the drug treatment effect (i.e. “Metformin plus Pioglitazone” and “Gliclazide plus Pioglitazone”) in presences of repeatedly measured missing observations to control serum cretinine levels in type 2 diabetes patients. Method: The joint longitudinal modeling approach is applied to deal with missing observations. The presences of missing observations are assigned with missing at random and not random. The Markov chain Monte Carlo (MCMC) is used to carry out the iteration procedure.

Results: The “Metformin plus Pioglitazone” is found more effective to control serum creatinine in comparison to “Gliclazide with Pioglitazone”. The joint longitudinal model with consideration of missing assumption proffers enhanced tool for inference on clinical trial data analysis.

Conclusion: The presence of missing observation is natural in repeated measurement. The tendency is to overlook the trial having observation and conclusion with missing observation. The elaborated method can be applied in other clinical trial problem to reduce the inconsistency due presence of missing observations.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Atanu Bhattacharjee


serum creatinine, type 2 diabetes, Markov chain Monte Carlo

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us