alexa Abstract | A simple method for the determination of efficiency of stabilized Fe0 nanoparticles for detoxification of chromium (VI) in water

Journal of Chemical and Pharmaceutical Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Original Articles Open Access

Abstract

Chromium is an important industrial metal used in various products/processes. Remediation of Cr contaminated sites poses both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. Zero valent iron, an important natural reductant of Cr (VI), is an option in the remediation of contaminated sites, transforming Cr (VI) to essentially nontoxic Cr(III). In the present investigation, an attempt is made to study the efficiency of Fe0 nanoparticles in remediation of Cr contaminated waters. Zero-valent iron (Fe0) nanoparticles were synthesized, characterized, and were tested for removal of Cr (VI) from the water spiked with Cr (VI). Fe0 nanoparticles were synthesized by ferrous sulphate by the reduction of sodium borohydride. The removal efficiency of unstabilised nano Fe0 was compared with Carboxy Methyl Cellulose stabilized Fe0 nano particles. It is observed that the CMC stabilizes the nanoparticles by accelerating the nucleation of atoms during the formation of Fe0 nanoparticles and subsequently forms a bulky and negatively charged layer via sorption of CMC molecules on the Fe0 nanoparticles, thereby preventing the nanoparticles from agglomeration. When a dose of 0.2 g/L of CMCFe0 was used for a sample of Cr(VI) (40 mg/L) 100% degradation was observed but the degradation was only 50% when proceeded with unstabilised Fe0 nano particles. The Cr (VI) removal efficiency was decreased significantly with increasing initial pH. Thus the Iron nanoparticles stabilized with CMC are of a good choice for the remediation of heavy metals in groundwater.

To read the full article Peer-reviewed Article PDF image

Author(s): Vemula Madhavi Ambavaram Vijaya Bhaskar ReddyKalluru Gangadhara Reddy andGajulapalli Madhavi

Keywords

Agglomeration, conventional method, nucleation, remediation, stabilization, removal efficiency., nanoparticles

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords