alexa Abstract | An optimal fourth order weighted-Newton method for computing multiple roots and basin attractors for various methods

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


In this paper, we present an optimal fourth order method for finding multiple roots of a nonlinear equation f(x)=0. In terms of computational cost, the method uses one evaluation of the function and two evaluations of its first derivative per iteration. Therefore, the method has optimal order with efficiency index 1.587 which is better than efficiency indices 1.414 of Newton method, 1.442 of Halley’s method and 1.414 of Neta-Johnson method. Numerical examples are given to support that the method thus obtained is competitive with other similar robust methods. The basins of attraction of the proposed method are presented and compared with other existing methods.

To read the full article Peer-reviewed Article PDF image

Author(s): Ashu Bahl and Rajni Sharma


Rootfinding, Newton method, Multiple root, Order of convergence, Efficiency, Basins of attraction, Root

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version