alexa Abstract | Atrigel: A potential parenteral controlled drug delivery system

Der Pharmacia Sinica
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


The Parenteral administration route is the most effective and common form of delivery for active drug substances with poor bio-availability and the drugs with a narrow therapeutic index. Though parenteral administration of drug is often critical and associated with problems such as limited number of acceptable excipients, stringent requirements of aseptic production process, safety issues, patient noncompliance. Still this route maintains its value due to special advantages like quicker onset of action in case of emergency, target the drug quickly to desired site of action, prevention of first pass metabolism etc. The application of advanced drug delivery technology to parenteral administration lead to development of liposomes, nanosuspensions, solid implants etc. to overcome limitations of conventional parenteral delivery. Solid implants are reported to produce very reproducible release profiles. However, because of their size, they require surgical implantation or the use of large trochars to administer the product. Delivery systems consisting of microparticles can be injected into the body using conventional needles and syringes and have been the most widely accepted biodegradable polymer system for parenteral use. However, the manufacturing processes for microparticles are often complex and difficult to control leading to batch-to-batch product non uniformity. These methods of administration often limit the product's market potential due to patient and physician acceptance issues. Therefore, a delivery system that combines the simplicity and reliability of solid implant devices alongwith convenience and ease of administration of microparticles is desired. In situ gel forming systems represent a desired alternate. This article compiles the information on the in situ gel forming system i.e. ATRIGEL technology designed to provide drug release in sustained manner.

To read the full article Peer-reviewed Article PDF image

Author(s): Karan Malik Inderbir Singh Manju Nagpal and Sandeep Arora


Parenteral controlled delivery systems, Atrigel, biodegradable polymers, Implants, liposomes, in situ gel forming systems

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us