alexa Abstract | Biochemical Characterisation and Whole Genome Expression Profiling of Cultured Skin Fibroblasts from Two South African Adults with Urinary 3-Hydroxyisovaleric Acid and 3-Methylcrotonylglycine

Journal of Rare Disorders: Diagnosis & Therapy
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

We report on the first case of marginal 3-methylcrotonyl-CoA carboxylase (MCC) deficiency in South Africa. Urinary 3-hydroxyisovaleric acid and 3-methylcrotonylglycine were detected in four males of a non-consanguineous family. Only the index patient (NWU001) had non-specific symptoms, the others were asymptomatic. The inherited metabolite profile and partially reduced MCC activity were indicative of marginal MCC deficiency. In vivo L-leucine loading confirmed a reduced flux through the leucine degradation pathway. No known deleterious mutations were detected in the open reading frames of MCCC1 and MCCC2. NWU001 was heterozygous for a SNP in MCCC1 (rs2270968; c.1391A>C, p.H464P). NWU002 was heterozygous for a MCCC2 splice variant which skips exon 7 and causes an in frame deletion of 38 amino acids that is identical to a predicted shorter MCCC2 isoform-2 (Q9HCC0-2). Whole genome expression profiles from cultured skin fibroblasts of NWU001 and NWU002 and two healthy adults using Affymetrix® HuExST1.0 arrays detected 14237 significantly differentially expressed transcript IDs of which only 1277 have known annotation and gene association. The underlying molecular interactions, secondary signalling responses and functional relationships of these 1277 transcripts were inspected following a knowledge-based functional analyses approach using Ingenuity Pathway Analysis software. The transcriptome had a footprint of oxidative stress, disruption of energy homeostasis, inflammation, impaired cellular maintenance and repair mechanisms. Of note was the significant up regulation of the fatty acid amide hydrolase variant 2 (FAAH2) HuChrX transcript in the anandamide degradation canonical pathway. The observations that the two MCC transcripts were not significantly differentially expressed and that more than 90% of the significantly differently expressed transcripts are still poorly annotated further support the notion that secondary factors other than the MCC loci impact on the MCC deficiency phenome.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Zandberg L Erasmus E Suormala T Mienie LJ Mels CMC and Van Dijk AA

Keywords

3-methylcrotonyl-CoA carboxylase deficiency, Oxidative stress, Affymetrix® HuExST1.0 array, 3-Hydroxyisovaleric acid, 3-Methylcrotonylglycine, Leucine catabolism

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords