alexa Abstract | Characterization of Non-oscillatory Motions in Magneto-Rotatory Thermal Convection in Couple-Stress Fluid in a Porous Medium

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access


The thermal instability of a couple-stress fluid heated from below in a porous medium acted upon by uniform vertical magnetic field and rotation is investigated. Following the linearized stability theory and normal mode analysis, the paper mathematically established the conditions for characterizing the oscillatory motions which may be neutral or unstable for rigid boundaries at the top and bottom of the fluid. It is established that all non-decaying slow motions starting from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth, which is acted upon by uniform vertical magnetic field and rotation, and a constant vertical adverse temperature gradient, are necessarily non-oscillatory in the regime 1 (2 2 1) (2 2 ) 2 2 £ - +         - l l A F P Qp PT p p p e , where A T is the Taylor number, Q is the Chandrasekhar number,e is the porosity, l P is the dimensionless medium permeability of the porous medium and F is the couple-stress parameter. The result is important since it holds for all wave numbers and the exact solutions of the problem investigated are not obtainable in closed form, when both the boundaries are perfectly conducting and rigid

To read the full article Peer-reviewed Article PDF image

Author(s): Ajaib S Banyal and Kamal Singh


Thermal convection, Couple-Stress Fluid, Rotation, Magnetic Field, PES, Rayleigh number, Chandrasekhar Number, Taylor number., Couple-Stress Fluid

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version