alexa Abstract | Classification of mammogram masses using selected texture, shape and margin features with multilayer perceptron classifier

Biomedical Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Computer-aided detection (CAD) assists radiologists by providing the second opinion in the mammography detection and reduces misdiagnosis. In this work the task of automatically classifying the mass tissue into benign and malign based on the characteristics of mass is investigated. Mass is characterized by its shape, margin, density, size and age of the patient. Geometrical shape, margin and texture features are used in this work to classify the masses. These features are found to be effective in discriminating benign mass from the malign mass. For the purpose of classification, the masses are segmented from the mammogram using gray level thresholding and features are extracted. Then the features are fuzzified using fuzzy membership values. Finally, the classification is performed using different classifiers and their performances are compared. Mammographic Image Analysis Society (MIAS) Database was used for experimental study. The experiments were implemented in MATLAB and WEKA.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): P Valarmathie V Sivakrithika K Dinakaran


Medical image analysis, Data mining, Cancer diagnosis, Mammogram classification, Computer aided diagnosis, Feature extraction, Feature selection, Classifiers, Mammogram abnormalities, #

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us