alexa Abstract | Classification of mammograms for breast cancer detection using fusion of discrete cosine transform and discrete wavelet transform features.

Biomedical Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Radiologists mainly depend upon computer aided detection/diagnosis (CAD) in order to rule out the indirect symptoms of malignant cells such as microcalcifications, architectural distortion and ill-defined masses in digital mammograms. A mammogram is low-contrast image whose quality needs to be enhanced for clarity and better interpretation. For this purpose, Genetic Programming (GP) based filter is proposed, while the fusion of Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) features is also proposed which is used as an input to classifier. The proposed scheme accomplishes 96.97% accuracy, 98.39% sensitivity and 94.59% specificity for classifying mammograms into normal and abnormal (cancer) categories using SVM (Support Vector Machine) classifier and MIAS (Mammographic Institute Society Analysis) dataset.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Muhammad Talha Naseem Uppal


Mammograms, Breast cancer, Enhancement, Micro-calcifications, Fusion, DCT, DWT, #

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us