alexa Developmentally regulated GTP binding protein 2 (DRG2) and Nup107 are associated with epigenetic regulation via H2A.Z on promoter regions of specific genes in MCF7 breast cancer cells | Abstract

Journal of Clinical Epigenetics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Background: Epigenetic changes are critical events in breast cancer development. The regulation of epigenetic marks is orchestrated by DNA methylation, modifications of canonical histones, and incorporation of histone variants. A histone variant of H2A.Z was recently reported to be associated with breast cancer progression. However, the physiological function of H2A.Z in breast cancer has yet to be revealed. We previously identified genetic interactions between H2AvD (Drosophila H2A.Z) and DRG2 by means of Drosophila screening. Results: We herein focused on identifying new factors associated with DRG2 in order to reveal the epigenetic impact of H2A.Z on breast cancer. Initially, in a series of protein purification assays with a Drosophila cell line, we identified Nup107, a nuclear pore complex protein, as one of the factors interacting with DRG2. In addition, RWD domain containing 1 (RWDD1), GCN1 like protein 1 (GCN1L1), eukaryotic translation initiation factor 4B (eIF4B), and argininosuccinate lyase (ASL) were co-purified. Next, employing chromatin immunoprecipitationmicroarray analysis on the human breast cancer cell line MCF7, we revealed that H2A.Z, DRG2, and Nup107 co-occupy the promoter regions of 1,947 genes. In the common genes showing co-occupation with these three factors, the largest category, which included 871 genes, was found to consist of ‘alternative splicing variants’. This result and the factors co-purified suggest that H2A.Z, DRG2, and Nup107 co-regulate mRNA splicing as well as nuclear export and translation. Conclusions: Further analysis focusing on the biological functions of DRG2 and Nup107 would facilitate elucidating the epigenetic impact of H2A.Z on breast cancer development.

To read the full article Peer-reviewed Article PDF image

Author(s): Masahiko Tanabe Sally Fujiyama and Yoshiya Horimoto

Keywords

Breast cancer, H2A.Z, Estrogen, Estrogen receptor, DRG2, Nup107, Epigenetics, Epigenome,Epigenetic Therapy

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version