alexa Abstract | Discovery of ?-lactam Antibiotic Resistance Specific Functional Residues: A Bioinformatics Approach

Electronic Journal of Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Since the introduction of β-lactam antibiotics, disease causing microbial resistance to these antibiotics has become a problem increasingly. Discovery of functional residues in beta-lactamase that play major role in antibiotic resistance provide an opportunity to understand their fundamental molecular mechanisms. We present an example of extraction of functional information from protein 3D structures using a bioinformatics approach in the context of the antibiotic resistance. In case studies, 45 homologous beta-lactamase sequences were investigated using a homology based approach by ConSurf server to analyse the surface of beta-lactamase to reveal common functional features which might facilitate them to identify lactam antibiotics. We have identified functional residues using phylogenetic studies, protein sequence MSA and three-dimensional mapping. The results demonstrate the presence of antibiotic resistance specific highly conserved residues comprising of high proportion of surface-exposed hydrophobic residues as do not endure amino acid substitutions, signifying that they have critical role in antibiotic resistance and the remaining positions tolerate amino acid substitutions and may affect the substrate specificity of the beta lactamase. These functionally important residues could also potentially be used in the rational design of novel, efficient antimicrobial agents

To read the full article Peer-reviewed Article PDF image

Author(s): Rajendra Mandage Padmaja Kamath Monali Wakle Afaque Momin


beta-lactamase, drug resistance, 3D structure, functional residues, ConSurf server, PSI-BLAST.

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version