alexa Abstract | Discrete Tchebichef moment based machine learning method for the classification of disorder with ultrasound kidney images

Biomedical Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Medical imaging provides a mean to visualize internal organs of human body, their anatomy as well as their functionality. Out of the many imaging modality such as CT, MRI, PET etc, ultrasound imaging of soft tissues is the safest one. However, the low contrast images of ultrasound modality poses the classification task as challenging one. A novel and effective approach for the classification of abnormalities in ultrasound B mode kidney images using Discrete Tchebichef Moment (DTM) is proposed. Instead of considering the whole kidney regions for the abnormality classification, typical blocks from the parenchyma (i.e cortex, medulla) and central sinus regions of kidney have been considered. Tchebichef kernels that are unique and not the rotational representation of existing kernels are carefully selected to extract the features from each of these blocks. A multiclass Support Vector machine (SVM) classifier with 5 fold cross validation has been used to carry out the classification. Performance of the proposed work is analysed with a dataset comprising of 160 samples from 40 images, Hu’s invariant features and Grey Level Co-occurance Matrix (GLCM) features are also extracted and fed as input to the multiclass SVM for comparative analysis. Quantitative evaluation metrics such as accuracy, precision, recall and fscore have been computed to reveal the performance of the proposed method. Promising results produced by the proposed work reveals the scope of Computer Aided classification of disorders in ultrasonic kidney images.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): S Bama D Selvathi

Keywords

Computer aided diagnosis, Ultrasound imaging, Discrete tchebicheff moment, Multi class SVM, #

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords