alexa Abstract | EFFECT OF POLYMER BLENDS IN DRUG RELEASE KINETICS FROM TRANSDERMAL DRUG DELIVERY SYSTEMS

International Journal of Drug Development and Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Abstract

Verapamil hydrochloride is a calcium ion influx inhibitor, which is used widely in the treatment of angina pectoris, hypertension and supraventricular tachyarrhythmias and used as conventional and sustained release dosage form. Present study is aimed at proper designing of the formulation parameters in terms of the excipient incorporation. Excipients include broadly hydrophilic and hydrophobic polymers, plasticizers and penetration enhancer. Polymers includes ethyl cellulose, hydroxyl propyl methyl cellulose K4M and polyvinyl pyrrolidone.Polyvinyl alcohol was used as to prepare backing membrane, Dibutyl phthalate was used as plasticizer and DMSO was used as transdermal penetration enhancer. After preparation of the transdermal patches, they were examined in respect to several physicochemical properties thickness, percent moisture content, percent moisture absorption, percent flatness, tensile strength, weight variation to satisfy the suitable physicochemical criteria for transdermal patch. For all the formulations, invitro release and skin permeation of the drug with and without incorporation of penetration enhancer (DMSO) through abdominal skin of albino rat were studied using Keshary-Chien diffusion cell. Formulation containing increased proportion of hydroxy propyl methyl cellulose K4M and polyvinyl pyrrolidone showed faster release of drug over a period of 24 hours where as increased proportion of ethyl cellulose produce a prolonged release of drug through transdermal route for a period of more than 24 hours. DMSO significantly increased the permeation of drug through abdominal skin of albino rat.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Chakraborty Prithviraj Dutta Debarupa Dey Biplab Kumar

Keywords

Polymers, Release Kinetics, Transdermal patch, Ethyl cellulose, HPMC, Polyvinyl pyrollidone

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords