alexa Abstract | Efficacy of Liposomal Monensin on the Enhancement of the Antitumour Activity of Liposomal Ricin in Human Epidermoid Carcinoma (KB) Cells

Indian Journal of Pharmaceutical Sciences
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Paper Open Access


The monensin, known to enhance the cytotoxicity of ricin and ricin-based immunotoxins is a very hydrophobic molecule and this limits its administration in optimum doses under in vivo conditions. In order to realise its full potential, monensin was intercalated into various liposomal formulations and its ability to potentiate the cytotoxicity of ricin liposomes in human epidermoid carcinoma (KB) cells was studied. It was observed that ricin cytotoxicity enhancing ability of monensin liposome depends on the surface charge as well as density and chain length of distearoyl phosphatidylethanolamine-methoxy polyethylene glycol present on the surface of liposomal monensin. Maximum potentiation on the cytotoxicity of liposomal ricin was observed by monensin entrapped in neutral liposome (106.5 fold) followed by negatively charged (94.2 fold) and positively charged liposome (90 fold). Studies on the effect of variation of density and chain length of distearoyl phosphatidylethanolamine-methoxy polyethylene glycol showed that neutral monensin liposomes having 2.5 mol% distearoyl phosphatidylethanolamine-methoxy polyethylene glycol with chain length of 2000 exhibits maximum potentiation (117.6 fold) on the cytotoxicity of ricin liposomes when the cellular uptake of monensin liposome was maximum (42.0%) and the zeta potential value on the surface of liposomes was −0.645. The present study has clearly shown that liposomal monensin is very effective in enhancing the cytotoxicity of liposomal ricin in human cancer cells and liposome can be used as in vivo deliver vehicle for monensin to potentiate the cytotoxicity of liposomal ricin to eliminate cancer cells.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): N Tyagi SS Rathore PC Ghosh


Human cancer cells, liposomal monensin, liposomal ricin, sterically stabilized liposomes, zeta potential

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version