alexa Abstract | Evaluating the Impact of Boosting on-site Enzymes produced by Trichoderma reesei RUT C30 and Aspergillus saccharolyticus with Commercial Enzymes in lowering the use of Commercial Cellulases.

Molecular Enzymology and Drug Targets
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


In-house production of cellulases from filamentous fungi is widely used, but their hydrolytic efficiency compared to commercial enzymes is limited. We studied the effect of supplementing in-house cellulases produced by Trichoderma reesei, RUT C30 and a novel strain, Aspergillus saccharolyticus with different types of commercial enzymes for the efficient hydrolysis of wet exploded loblolly pine. Cellic®Ctec 2, Cellic®Htec2 and Novozym 188 were used as the commercial base enzymes for supplementing the in-house produced enzymes. Compared to non- supplemented in-house enzymes preparation, commercial enzymes (Cellic®Ctec2) added in the same amount as FPU and CBU, resulted in 68% higher glucose yield using wet exploded loblolly pine (WELP) at a 20% DM concetration. The highest saccharifcation yield was achieved by supplementation of the in-house produced cellulases with Cellic®Htec2 compared to Cellic®Ctec2 and Novozym 188. Optimal glucose, xylose and mannose yields, 85%, 92% and 86%, respectively were achieved by using in-house enzymes (15 FPU/g cellulose) supplemented with commercial hemicellulase (7.5 FPU/g cellulose). These results showed that supplementing in-house enzymes with commercial enzymes can be advantageous and work for lowering the overall cost of enzymes in a biorefinery.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Vandana Rana Birgitte K Ahring


Wet explosion, loblolly pine, , , Cellic®Ctec2, Novozym 188 Introduction Efficient conversion of lignocellulosic polysaccharides to fermentable sugars is the key for commercial production of biofuels [1,2]. Despite many technological improvements, pretreatment and utilization of commercially available lignocellulolytic enzymes to break the recalcitrant nature of lignocellulosic biomass is limiting the viability of producing biofuels [3-7]. Efficient and economically viable ethanol production requires that all sugars produced from cellulose and hemicellulose be converted to ethanol or other bioproducts [8,9]. Enzymatic hydrolysis plays a pivotal role in efficient conversion of the cellulose and hemicelluloses fractions of pretreated biomass materials. The efficiency of enzymatic hydrolysis depends on the pretreatment and right kind and proportions of enzyme cocktails that are used. Numerous studies to investigate the potential of softwood conversion to ethanol have been done in the last two decades [6,10,11]. Pretreatment conditions affect the requisite enzyme mixture employed for polysaccharide hydrolysis. Previously, acid and SO2 catalyzed steam explosion was extensively used to pretreat softwood for enhancing the enzymatic hydrolysis [12- 17]. Among different pretreatment methods developed to date, wet explosion (WEx) is considered one of the most appropriate and cost effective methods for deconstruction of softwood and Trichoderma reesei Aspergillus,saccharolyticus, Enzymes and Drug Targets, Wet explosion

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version