alexa Abstract | Formulation Characterization and In-Vivo Anti-ischemic activity of Ranolazine loaded Ethyl Cellulose Microspheres in Albino Wistar Rats

International Journal of Drug Development and Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Abstract

Ranolazine (RZ) is an antiischemic/antianginal agent employed in therapy of cardiovascular diseases such as myocardial infarction, variant and exercise-induced angina and arrhythmias constipation, headache, nausea and dizziness are the most common side effects. So the aim of the present research work was to formulation characterization and invivo antiischemic activity of RZ loaded ethyl cellulose microspheres in albino wistar rats. RZ microspheres were developed by oil-in-water (o/w) emulsion solvent diffusion evaporation technique with different ratio of drug and ethyl cellulose as a polymer in order to achieve high entrapment efficiency and prolonged release characteristics. The prepared microspheres were subjected for characterization by scanning electron microscopy (SEM), percent yield, Fourier transformer infra red spectroscopy (FTIR), X-ray diffraction (XRD), percent entrapment efficiency and percent drug release. The size of microspheres formulations (F1 to F6) were in range of 20±1.2 to 54±1.7μm, percent yield 78.21±2.31 to 94.24±1.21%, percent drug entrapment efficiency 53.25±0.65 to 85.76±0.78% and percent drug release 56.87 ± 0.34 to 92.74 ± 0.83 % up to 12 hrs. XRD and IR studies showed no interaction between drug and polymer; no degradation during microspheres preparation and stable at storage conditions. Then compare in-vivo activity of optimized F2 microspheres formulation to standard drug in 120-200g of Albino wistar rats of either sex. The results of present study reflect that successfully prepared free flowing RZ loaded EC microspheres and showed a significant reduction in level of cardiac biomarker LDH and CK-MB enzyme for prolong period of time with respect to standard in isoproterenol induced myocardiac infraction (MI) rats.

To read the full article Peer-reviewed Article PDF image

Author(s): Gupta Jitendra Mohan Govind Prabakaran L

Keywords

Anti-ischemic, Ranolazine, Isoproterenole

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords