alexa Graphene Quantum Dot-Modified Lipase for Synthesis of L-menthyl Acetate with Improved Activity, Stability and Thermostability | Abstract

Synthesis and Catalysis: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

Title: Pseudomonas cepacia lipase modified with Graphene Quantum Dots (GQD) offers a higher activity, stability and thermostability compared to the lipase modified with graphene oxide.

Background: GQD presents extraordinary properties attracting extensive attention from scientists in chemistry, physics, materials, biology and other interdisciplinary sciences. However, no research involves the application in biocatalysts in non-aqueous media up to now. In the study, we for the first time reported a promising GQDmodified lipase for the synthesis of l-menthyl acetate.

Methods and findings: Pseudomonas capaci lipase was modified with GQD and then used as a biocatalyst for the synthesis of l-menthyl acetate in 1-isobutyl-3- methylimidazolium hexafluorophosphate medium. As contrasts, the reaction was also carried out using bare lipase and graphene oxide-modified lipase as the catalyst. Besides, the modification method of enzyme, the amounts of GQD, the reaction temperature, molar ratio of the two substrates, and reuse of the enzyme were investigated. The result shows that the GQD-modified lipase as a biocatalyst was best among the three enzymes. Under optimal reaction conditions, the reaction reaches the equilibrium within 8 h with a high conversion of lmenthol (97.3%). Its initial enzyme activity and halflifetime were more than 1.08 and 2.07-fold that of the bare lipase, and 1.04 and 1.66-fold that of the graphene oxide-modified lipase, respectively. The lipase was recycled 10 times without substantial diminution in activity. In addition, the GQD-modified lipase also offers a better thermostability compared with bare lipase. These improvements could be attributed to the unique small size and edge effect of GQD.

Conclusion: GQD-modified lipase showed a higher activity, stability and thermostability compared to GO- modified lipase. GQD was widely used as a promising material for enzyme modification due to its good biocompatibility and small size.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Zhou Xiaoyan Bei Hongxia Li Zaijun and Liu Junkang

Keywords

Graphene Quantum Dot (GQD), Lipase, Biocatalyst, l-menthyl acetate, Synthesis

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version