alexa Abstract | Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a dusty fluid over a flat stretching sheet in the presence of viscous dissipation. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved numerically by applying Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method). The effects of fluid-particle interaction parameter, Chandrasekhar number, Prandtl number, Eckert number on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Comparison of the obtained numerical results is made with existing literature.

To read the full article Peer-reviewed Article PDF image

Author(s): BJGireesha GKRamesh and CSBagewadi


Boundary layer flow, dusty fluid, Chandrasekhar number, viscous dissipation, fluid-particle interaction parameter, numerical solution. AMS Subject Classification (2000): 76T15, 80A20,, Boundary layer flow

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us