alexa Abstract | IFN? Increases M2 Muscarinic Receptor Expression in Cultured Sympathetic Neurons

Current Neurobiology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


M2 muscarinic receptors are expressed on both parasympathetic and sympathetic nerve endings where they function as autoinhibitory receptors to limit release of acetylcholine and norepinephrine, respectively. M2 muscarinic receptor expression on parasympathetic nerves is decreased by viral infection and by gamma-interferon (IFNγ) and increased by dexamethasone; and these effects are of clinical relevance in the etiology and treatment of asthma. Whether IFNγ and dexamethasone similarly modulate M2 receptor expression on sympathetic nerves is not known. To address this question, we examined the effects of IFNγ and dexamethasone on M2 receptor expression at the mRNA and protein level in primary cultures of sympathetic neurons dissociated from the rat superior cervical ganglia (SCG). Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) indicated that neither IFNγ nor dexamethasone altered M2 receptor transcript levels. However, western blot analyses demonstrated that IFNγ, but not dexamethasone, increases M2 receptor protein expression in sympathetic neurons. Increased expression did not significantly alter subcellular localization of M2 receptors in sympathetic neurons as determined using immunocytochemistry. These findings indicate that M2 receptors are differentially regulated in different types of autonomic neurons, and they suggest a novel mechanism by which IFNγ may contribute to airway hyperreactivity in viral-induced asthma.

To read the full article Peer-reviewed Article PDF image

Author(s): Ana Cristina G Grodzki Atefeh Ghogha Linley Mangini Allison D Fryer and Pamela J Lein


IFNγ, dexamethasone, M2 muscarinic receptor, sympathetic nerves.

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version