alexa Abstract | In Silico Comparative analysis of Cancer and Stem Cell Microarray data to demonstrate Molecular Transitions and the relative involvement of Glycolysis and Oxidative Phosphorylation cost-effective correlation of Bioenergetics and differentiation Processes -Applications In Drug Development

International Journal of Drug Development and Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Abstract

In the present study, we have validated the molecular switching between Glycolysis and Oxidative phosphorylation (OXPHOS) in certain cell types using open access in silico tools. Most of the cancers cells predominantly show higher rate of glycolysis (pyruvate formation) followed by lactic acid fermentation, in contrast with the predominant role of mitochondria in non- cancerous cells. This type of molecular switching is also noticed during the early stages of embryonic development, wherein the metabolic shift from OXPHOS to glycolysis occurs. Hence, it is necessary to study the switching between these pathways to most accurately replicate physiological conditions ex vivo/in vitro in differentiation/targeted differentiation-based studies. Further, an approach of this nature can help in further documenting the role of aberrations in cellular bioenergetics, contributing to neoplasia. A set of microarray datasets were selected from the NCBI GEO database, modelling three physiological conditions i.e., early development (stem cell), cancer, and Induced pluripotent cells (iPSCs). Data was analyzed using the 'R' software with packages imported from Bioconductor. Our results confirm the aforesaid switches/metabolic transitions in the selected data sets representing key cell types at various stages in the differentiation pathway. To the best of our knowledge, this is the first study of its kind wherein an in silico approach has been adopted to document/demonstrate the cellular, molecular transitions in two major metabolic pathways with ramifications in basic biology and drug development.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Ayyappa Kumar S K Suresh P K

Keywords

In silico, microarray, glycolysis, oxidative phosphorylation, Gene Expression Omnibus database (GEO), Oxidative Phosphorylation (OXPHOS), Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA).

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords