alexa Abstract | Intestinal Bicarbonate Secretion in Cystic Fibrosis Mice

JOP. Journal of the Pancreas
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Abstract

Gene-targeted disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) in mice results in an intestinal disease phenotype that is remarkably similar to bowel disease in cystic fibrosis patients. In the intestinal segment downstream from the stomach (i.e., the duodenum), CFTR plays an important role in bicarbonate secretion that protects the epithelium from acidic gastric effluent. In this report, we examine the role of CFTR in cAMP-stimulated bicarbonate secretion in the murine duodenum and the mechanisms of acid-base transport that are revealed in CFTR knockout (CF) mice. Ion substitution, channel blocker and pH stat studies comparing duodena from wild-type and CF mice indicate that CFTR mediates a HCO3 - conductance across the apical membrane of the epithelium. In the presence of a favorable cellto-lumen HCO3 - gradient, the CFTR-mediated HCO3 - current accounts for about 80% of stimulated HCO3 - secretion. Exposure of the duodenal mucosa to acidic pH reveals another role of CFTR in facilitating HCO3 - secretion via an electroneutral, 4,4’-diisothiocyanatostilbene-2,2’ disulfonic acid (DIDS) sensitiveCl- /HCO3 - exchange process. In CF duodenum, other apical membrane acid-base transporters retain function, thereby affording limited control of transepithelial pH. Activity of a Cl- - dependent anion exchanger provides nearconstant HCO3 - secretion in CF intestine, but under basal conditions the magnitude of secretion is lessened by simultaneous activity of a Na+ /H+ exchanger (NHE). During cAMP stimulation of CF duodenum, a small increase in net base secretion is measured but the change results from cAMP inhibition of NHE activity rather than increased HCO3 - secretion. Interestingly, a small inward current that is sensitive to the anion channel blocker, 5-nitro- 2(3-phenylpropyl amino)-benzoate (NPPB), is also activated during cAMP stimulation of the CFTR-null intestine but the identity of the current is yet to be resolved. Studies to identify the proteins involved in non-CFTR mediated HCO3 - secretion are on-going and potentially will provide targets to correct deficient HCO3 - secretion in the CF intestine.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Lane L Clarke Xavier Stien Nancy M Walker

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords