alexa Abstract | Isolation and identification of a novel thermo-alkaline, thermostable, SDS and chelator resistant amylase producing Anoxybacillus sp. IB-A from hot spring of Bakreswar, West Bengal (India): First report

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Amylases are one of the most important enzymes in present-day biotechnology. The objective of this study was to isolate and identify a potential thermophilic amylase producing bacterial strain from hot spring of Bakreswar village, Suri, West Bengal (India). Among the few isolated amylolytic strains on starch agar medium, the strain IB-A showed best amylase activity. Phylogenetic analysis based on 16S rDNA sequence homology shows that the isolated strain belongs to the genus Anoxybacillus, and named as Anoxybacillus sp. IB-A. The optimum temperature and pH for amylase production was found to be 60°C at pH 9.0. Characterization of crude amylase showed its best activity at pH 9.0 and temperature 70°C, with a thermostability of 100% for 10 hours. Enzyme activity was considerably enhanced in the presence of Mo+2, K+, Mn+2, Cu+2 and Co+2. The most significant observation is that the enzyme not only retained cent percent activity in presence of 10 mM Hg+2 and Pb+2 but also increased activity over the control. Among the tested metal ions Zn+2 and Ni+2 showed slight inhibitory effect. The enzyme also showed its high stability and activity in presence of surfactants and chelators, such as SDS, EDTA. So our result showed that the enzyme is highly thermostable, thermo-alkaline and chelator resistant which makes it a suitable candidate for liquefaction of starch at high temperature, in detergent and textile industries. This one is the first report of isolating a potential amylase producing thermophilic Anoxybacillus sp. from hot spring of Bakreswar, West Bengal (India).

To read the full article Peer-reviewed Article PDF image

Author(s): Ipsit HauliBidisha Sarkar Trinetra Mukherjee and Subhra K Mukhopadhyay


Thermophilic Anoxybacillus sp., Thermo-alkaline amylase, Thermostable, SDS and chelator resistant, Hg+2 resistant, Thermostable

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version