alexa Abstract | Localization and Expression of CCR3 and CCR5 by Interleukin-1β in the RIN-5AH Insulin-Producing Model System: A Protective Mechanism involving Down-Regulation of Chemokine Receptors

JOP. Journal of the Pancreas
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Context and objective The inflammatory cytokine interleukin-1β has been considered to be an immune effector molecule in insulin dependent diabetes mellitus. As such, we examined its role on chemokine receptors which, when expressed in the pancreas, have also been associated with the development of type I autoimmune diabetes. Design and main outcome measures The presence of membrane and cytoplasmic levels of CCR3 and CCR5 expression is assessed by immunofluorescence in control and interleukin-1β-treated RIN-5AH cells. The cytoplasmic expression is also shown by confocal microscopy as assessed by the brightness of the cells whereas enzyme-linked immunosorbent assay detects secreted CCR3 and CCR5 molecules by comparing optical density values as these derive from the control and the treated cells. Cell-fractionation experiments show the exact location of the intracellular pools of the chemokine receptors by using the rab7 monoclonal antibody as a guiding molecule. Results Interleukin-1β down-regulates constitutively expressed surface CCR3 and CCR5 levels implying receptor internalization for re-utilization or destruction, secretion or both. Cytoplasmic immunofluorescence and confocal microscopy demonstrate cellular retention of chemokine receptors by interleukin-1β which may be released in the absence of interleukin-1β as assessed by enzyme-linked immunosorbent assay. Finally, cell-fractionation shows the presence of bothreceptors in endosomes exhibiting an increasing density after interleukin-1β treatment. Conclusions Given the association of chemokine receptors with progression to diabetes, it appears that interleukin-1β- induced down-regulation of CCR3 and CCR5 promotes a protective mechanism against cellular destruction. The major role of interleukin-1β is to maintain these molecules within the endosomes. Thus, interleukin-1β modulates the movement and the expression of constitutively expressed chemokine receptors and does not accentuate the totaldestructive effect suffered by the cells.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Simon Vassiliadis Vassiliki Balabanidou George K Papadopoulos Irene Athanassakis


Cytoplasmic Structures, Diabetes Mellitus, Insulin-Dependent, Disease, Endosomes, Interleukins, Lysosomes, Receptors, Chemokine, Subcellular Fractions, Diabetes Mellitus

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us