alexa Abstract | MHD effects on micropolar nanofluid flow over a radiative stretching surface with thermal conductivity

Advances in Applied Science Research
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article Open Access

Abstract

In this paper, an analysis is presented the effects of variable thermal conductivity and radiation on the flow and heat transfer of an electrically conducting micropolar nanofluid over a continuously stretching surface with varying temperature in the presence of a magnetic field considered. The surface temperature is assumed to vary as a powerlaw temperature. The governing conservation equations of mass, momentum, angular momentum and energy are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved by implicit finite difference method with the Thomas algorithm. The results are analyzed for the effect of different physical parameters such as magnetic parameter, microrotation parameter, Prandtl number, radiation parameter; Eckert number, thermal conductivity parameter, Brownian motion parameter, Thermophoresis parameter, Lewis number, and surface temperature parameter on the velocity, angular velocity, temperature and concentration fields are presented through graphs. Physical quantities such as skin friction coefficient, local heat, local mass fluxes are also computed and are shown in table

To read the full article Peer-reviewed Article PDF image

Author(s): Srinivas Maripala and Kishan Naikoti

Keywords

Nanofluid, heat transfer, finite difference method, thermal conductivity, nanofluid

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords