alexa Abstract | Prediction of human targets for viral-encoded microRNAs by thermodynamics and empirical constraints

Journal of RNAi and Gene Silencing
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Abstract

MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression through degradation of specific mRNAs and/or repression of their translation. miRNAs are involved in both physiological and pathological processes, such as apoptosis and cancer. Their presence has been demonstrated in several organisms as well as in viruses. Virus encoded miRNAs can act as viral gene expression regulators, but they may also interfere with the expression of host genes. Viral miRNAs may control host cell proliferation by targeting cell-cycle and apoptosis regulators. Therefore, they could be involved in cancer pathogenesis. Computational prediction of miRNA/target pairs is a fundamental step in these studies. Here, we describe the use of miRiam, a novel program based on both thermodynamics features and empirical constraints, to predict viral miRNAs/human targets interactions. miRiam exploits target mRNA secondary structure accessibility and interaction rules, inferred from validated miRNA/mRNA pairs. A set of genes involved in apoptosis and cell-cycle regulation was identified as target for our studies. This choice was supported by the knowledge that DNA tumor viruses interfere with the above processes in humans. miRNAs were selected from two cancer-related viruses, Epstein-Barr Virus (EBV) and Kaposi-Sarcoma-Associated Herpes Virus (KSHV). Results show that several transcripts possess potential binding sites for these miRNAs. This work has produced a set of plausible hypotheses of involvement of v-miRNAs and human apoptosis genes in cancer development. Our results suggest that during viral infection, besides the protein-based host regulation mechanism, a post-transcriptional level interference may exist. miRiam is freely available for downloading at http://ferrolab.dmi.unict.it/miriam.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Alessandro Lagan Stefano Forte Francesco Russo Rosalba Giugno Alfredo Pulvirenti Alfredo Ferro

Keywords

miRNA, virus, cancer, apoptosis, cell cycle, EBV, KSHV, RNAi, Gene Silencing

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords