alexa Abstract | Ranitidine Hydrochloride-loaded Ethyl Cellulose and Eudragit RS 100 Buoyant Microspheres: Effect of pH Modifiers

Indian Journal of Pharmaceutical Sciences
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Paper Open Access

Abstract

A floating type of dosage form of ranitidine hydrochloride in the form of microspheres capable of floating on simulated gastric fluid was prepared by solvent evaporation technique. Microspheres prepared with ethyl cellulose, Eudragit® RS100 alone or in combination were evaluated for percent yield, drug entrapment, percent buoyancy and drug release and the results demonstrated satisfactory performance. Microspheres exhibited ranitidine hydrochloride release influenced by changing ranitidine hydrochloride-polymer and ranitidine hydrochloride-polymer-polymer ratio. Incorporation of a pH modifier has been the usual strategy employed to enhance the dissolution rate of weakly basic drug from floating microspheres. Further citric acid, fumaric acid, tartaric acid were employed as pH modifiers. Microspheres prepared with ethyl cellulose, Eudragit® RS100 and their combination that showed highest release were utilized to study the effect of pH modifiers on ranitidine hydrochloride release from microspheres which is mainly affected due to modulation of microenvironmental pH. In vitro release of ranitidine hydrochloride from microspheres into simulated gastric fluid at 37º showed no significant burst effect. However the amount of release increased with time and significantly enhanced by pH modifiers. 15% w/w concentration of fumaric acid provide significant drug release from ranitidine hydrochloride microspheres prepared with ranitidine hydrochloride:ethyl cellulose (1:3), ranitidine hydrochloride:Eudragit® RS100 (1:2) and ranitidine hydrochloride:ethyl cellulose:Eudragit® RS100 (1:2:1) whereas citric acid, tartaric acid showed significant cumulative release at 20% w/w. In all this study suggest that ethyl celluose, Eudragit® RS100 alone or in combination with added pH modifiers can be useful in floating microspheres which can be proved beneficial to enhance the bioavailability of ranitidine hydrochloride.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): NR Kotagale AP Parkhe AB Jumde HM Khandelwal MJ Umekar

Keywords

Ethyl cellulose, Eudrgit® RS100, floating microspheres, microenvironmental pH, pH modifiers, ranitidine hydrochloride

 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords