alexa Abstract | Selective HDAC6 Inhibition Corrects Aberrant B Cell Development in the Bone Marrow of NZB/W F1 Mice

Cellular & Molecular Medicine: Open access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


B cell development in the bone marrow is highly complex and includes vital regulatory checkpoints to maintain central tolerance. Defects in central tolerance are implicated in systemic lupus erythematosus (SLE) and aberrant B cell development has been reported in NZB/W mice. We hypothesized that altered B cell development in the bone marrow of lupus-prone NZB/W mice would be corrected after HDAC6 inhibition. B cell development was evaluated by flow cytometric analysis of Hardy fractions from bone marrow cells of NZB/W mice treated with an HDAC6 inhibitor or vehicle control. Additionally, deep sequence analysis of RNA from the bone marrow was utilized to identify potential targets of HDAC6. As NZB/W mice aged, there was an apparent shift in later stages of B cell development suggesting accelerated progression through maturation and potential to bypass key regulatory checkpoints. After HDAC6 inhibition, the alteration was corrected and RNAseq analysis revealed differential expression of 849 genes in the bone marrow. We focused on 6 genes related to B cell development and differentiation (ccr9, spib, pou2af1, nfil3, cebpb, and lgals1) and found that HDAC6 appears to have the most impact on expression of spiB, an early regulator of B cell development, and pou2af1, a regulator during later stages of B cell development. We conclude that HDAC6 inhibition helps correct aberrant B cell development and differentiation in the bone marrow of lupus-prone NZB/W mice. These results also identified new potential targets for HDAC6 regulation within the bone marrow, particularly spiB and pou2af1.

To read the full article Peer-reviewed Article PDF image

Author(s): Miranda D Vieson Xin M Luo Song Li Alexander M Gojmerac Adrian Castaneda and Christopher M Reilly


B cell development, Bone marrow, Histonedeacetylase 6, RNA seq, Systemic lupus erythematosus, Cellular medicine, Molecular medicine,Genetic Medicine Gene Therapy, Medical Biology

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version